A Reduced-Order Decoupling Method Applied to Efficient Junction Temperature Simulation Model in Multichip Devices

As the power density of power modules increases, the cross-heating effects in multichip modules become severe, which intensifies the local overheating stress. To accurately predict the dynamic thermal characteristics of the multichip modules, this article establishes the mathematical relationship be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of emerging and selected topics in power electronics 2023-10, Vol.11 (5), p.5405-5416
Hauptverfasser: Han, Tongyao, Luo, Yifei, Liu, Binli, Shi, Zenan, Shen, Haolan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5416
container_issue 5
container_start_page 5405
container_title IEEE journal of emerging and selected topics in power electronics
container_volume 11
creator Han, Tongyao
Luo, Yifei
Liu, Binli
Shi, Zenan
Shen, Haolan
description As the power density of power modules increases, the cross-heating effects in multichip modules become severe, which intensifies the local overheating stress. To accurately predict the dynamic thermal characteristics of the multichip modules, this article establishes the mathematical relationship between the resistance–capacitance (RC) parameters and the thermal diffusion angle to obtain accurate RC parameters. The decoupling of the self-heating and cross-heating effects is realized according to the dynamic power flow in the RC thermal network, reducing the transient thermal impedance matrix to the steady-state thermal resistance matrix. In this way, the 3-D cross-heating effect on the junction temperature is characterized by the 1-D RC thermal network. Then, an efficient junction temperature simulation model based on the reduced-order decoupling method is proposed. This article also identifies the variation law of RC parameters with boundary conditions. Compared with existing models that need transient information, the model parameter extraction process requires only the steady-state information of the finite-element method (FEM) and fewer RC parameters, which improves the parameter extraction efficiency by more than [Formula Omitted]. In addition, compared with the FEM model, the transient junction temperature prediction efficiency is improved by more than [Formula Omitted]. Finally, based on a 1200-V/50-A half-bridge module, an electrothermal coupling model is constructed and applied to a three-phase two-stage inverter circuit. The results verify the accuracy and effectiveness of the proposed model, demonstrating that the junction temperature error between the proposed model and the experimental result is less than 5%.
doi_str_mv 10.1109/JESTPE.2023.3288125
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2872434929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872434929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-bf3a9794262cb7a149e515ce8a055b00377f74f4a4d5b652a983eabfad2d14493</originalsourceid><addsrcrecordid>eNo9kEtrwzAQhE1poSHNL-hF0LNTPS35GFL3ERJSmvRsZGndKDiWI9uF_vs6TehednYZZuCLonuCp4Tg9HGRbbbv2ZRiyqaMKkWouIpGlCQqTqQS1_9aytto0rZ7PIyiIpVqFB1n6ANsb8DG62AhoCcwvm8qV3-hFXQ7b9GsGU6wqPMoK0tnHNQdWvS16Zyv0RYODQTd9QHQxh36Sv-9V95Chdwg-qpzZueaIfnbGWjvoptSVy1MLnscfT5n2_lrvFy_vM1ny9hQKbu4KJlOZcppQk0hNeEpCCIMKI2FKDBmUpaSl1xzK4pEUJ0qBrootaWWcJ6ycfRwzm2CP_bQdvne96EeKnOqJOWMp_TkYmeXCb5tA5R5E9xBh5-c4PyENz_jzU948wte9gsd026K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872434929</pqid></control><display><type>article</type><title>A Reduced-Order Decoupling Method Applied to Efficient Junction Temperature Simulation Model in Multichip Devices</title><source>IEEE Xplore</source><creator>Han, Tongyao ; Luo, Yifei ; Liu, Binli ; Shi, Zenan ; Shen, Haolan</creator><creatorcontrib>Han, Tongyao ; Luo, Yifei ; Liu, Binli ; Shi, Zenan ; Shen, Haolan</creatorcontrib><description>As the power density of power modules increases, the cross-heating effects in multichip modules become severe, which intensifies the local overheating stress. To accurately predict the dynamic thermal characteristics of the multichip modules, this article establishes the mathematical relationship between the resistance–capacitance (RC) parameters and the thermal diffusion angle to obtain accurate RC parameters. The decoupling of the self-heating and cross-heating effects is realized according to the dynamic power flow in the RC thermal network, reducing the transient thermal impedance matrix to the steady-state thermal resistance matrix. In this way, the 3-D cross-heating effect on the junction temperature is characterized by the 1-D RC thermal network. Then, an efficient junction temperature simulation model based on the reduced-order decoupling method is proposed. This article also identifies the variation law of RC parameters with boundary conditions. Compared with existing models that need transient information, the model parameter extraction process requires only the steady-state information of the finite-element method (FEM) and fewer RC parameters, which improves the parameter extraction efficiency by more than [Formula Omitted]. In addition, compared with the FEM model, the transient junction temperature prediction efficiency is improved by more than [Formula Omitted]. Finally, based on a 1200-V/50-A half-bridge module, an electrothermal coupling model is constructed and applied to a three-phase two-stage inverter circuit. The results verify the accuracy and effectiveness of the proposed model, demonstrating that the junction temperature error between the proposed model and the experimental result is less than 5%.</description><identifier>ISSN: 2168-6777</identifier><identifier>EISSN: 2168-6785</identifier><identifier>DOI: 10.1109/JESTPE.2023.3288125</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Boundary conditions ; Decoupling method ; Finite element method ; Heating ; High temperature effects ; Impedance matrix ; Model reduction ; Multichip modules ; Overheating ; Parameter identification ; Power flow ; Reduced order models ; Simulation models ; State (computer science) ; Steady state ; Thermal diffusion ; Thermal resistance</subject><ispartof>IEEE journal of emerging and selected topics in power electronics, 2023-10, Vol.11 (5), p.5405-5416</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-bf3a9794262cb7a149e515ce8a055b00377f74f4a4d5b652a983eabfad2d14493</citedby><cites>FETCH-LOGICAL-c277t-bf3a9794262cb7a149e515ce8a055b00377f74f4a4d5b652a983eabfad2d14493</cites><orcidid>0000-0002-9214-2182 ; 0000-0003-4608-1208 ; 0000-0001-6204-7945 ; 0000-0003-0848-8605 ; 0000-0002-2592-4328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Han, Tongyao</creatorcontrib><creatorcontrib>Luo, Yifei</creatorcontrib><creatorcontrib>Liu, Binli</creatorcontrib><creatorcontrib>Shi, Zenan</creatorcontrib><creatorcontrib>Shen, Haolan</creatorcontrib><title>A Reduced-Order Decoupling Method Applied to Efficient Junction Temperature Simulation Model in Multichip Devices</title><title>IEEE journal of emerging and selected topics in power electronics</title><description>As the power density of power modules increases, the cross-heating effects in multichip modules become severe, which intensifies the local overheating stress. To accurately predict the dynamic thermal characteristics of the multichip modules, this article establishes the mathematical relationship between the resistance–capacitance (RC) parameters and the thermal diffusion angle to obtain accurate RC parameters. The decoupling of the self-heating and cross-heating effects is realized according to the dynamic power flow in the RC thermal network, reducing the transient thermal impedance matrix to the steady-state thermal resistance matrix. In this way, the 3-D cross-heating effect on the junction temperature is characterized by the 1-D RC thermal network. Then, an efficient junction temperature simulation model based on the reduced-order decoupling method is proposed. This article also identifies the variation law of RC parameters with boundary conditions. Compared with existing models that need transient information, the model parameter extraction process requires only the steady-state information of the finite-element method (FEM) and fewer RC parameters, which improves the parameter extraction efficiency by more than [Formula Omitted]. In addition, compared with the FEM model, the transient junction temperature prediction efficiency is improved by more than [Formula Omitted]. Finally, based on a 1200-V/50-A half-bridge module, an electrothermal coupling model is constructed and applied to a three-phase two-stage inverter circuit. The results verify the accuracy and effectiveness of the proposed model, demonstrating that the junction temperature error between the proposed model and the experimental result is less than 5%.</description><subject>Boundary conditions</subject><subject>Decoupling method</subject><subject>Finite element method</subject><subject>Heating</subject><subject>High temperature effects</subject><subject>Impedance matrix</subject><subject>Model reduction</subject><subject>Multichip modules</subject><subject>Overheating</subject><subject>Parameter identification</subject><subject>Power flow</subject><subject>Reduced order models</subject><subject>Simulation models</subject><subject>State (computer science)</subject><subject>Steady state</subject><subject>Thermal diffusion</subject><subject>Thermal resistance</subject><issn>2168-6777</issn><issn>2168-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEtrwzAQhE1poSHNL-hF0LNTPS35GFL3ERJSmvRsZGndKDiWI9uF_vs6TehednYZZuCLonuCp4Tg9HGRbbbv2ZRiyqaMKkWouIpGlCQqTqQS1_9aytto0rZ7PIyiIpVqFB1n6ANsb8DG62AhoCcwvm8qV3-hFXQ7b9GsGU6wqPMoK0tnHNQdWvS16Zyv0RYODQTd9QHQxh36Sv-9V95Chdwg-qpzZueaIfnbGWjvoptSVy1MLnscfT5n2_lrvFy_vM1ny9hQKbu4KJlOZcppQk0hNeEpCCIMKI2FKDBmUpaSl1xzK4pEUJ0qBrootaWWcJ6ycfRwzm2CP_bQdvne96EeKnOqJOWMp_TkYmeXCb5tA5R5E9xBh5-c4PyENz_jzU948wte9gsd026K</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Han, Tongyao</creator><creator>Luo, Yifei</creator><creator>Liu, Binli</creator><creator>Shi, Zenan</creator><creator>Shen, Haolan</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9214-2182</orcidid><orcidid>https://orcid.org/0000-0003-4608-1208</orcidid><orcidid>https://orcid.org/0000-0001-6204-7945</orcidid><orcidid>https://orcid.org/0000-0003-0848-8605</orcidid><orcidid>https://orcid.org/0000-0002-2592-4328</orcidid></search><sort><creationdate>20231001</creationdate><title>A Reduced-Order Decoupling Method Applied to Efficient Junction Temperature Simulation Model in Multichip Devices</title><author>Han, Tongyao ; Luo, Yifei ; Liu, Binli ; Shi, Zenan ; Shen, Haolan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-bf3a9794262cb7a149e515ce8a055b00377f74f4a4d5b652a983eabfad2d14493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary conditions</topic><topic>Decoupling method</topic><topic>Finite element method</topic><topic>Heating</topic><topic>High temperature effects</topic><topic>Impedance matrix</topic><topic>Model reduction</topic><topic>Multichip modules</topic><topic>Overheating</topic><topic>Parameter identification</topic><topic>Power flow</topic><topic>Reduced order models</topic><topic>Simulation models</topic><topic>State (computer science)</topic><topic>Steady state</topic><topic>Thermal diffusion</topic><topic>Thermal resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Tongyao</creatorcontrib><creatorcontrib>Luo, Yifei</creatorcontrib><creatorcontrib>Liu, Binli</creatorcontrib><creatorcontrib>Shi, Zenan</creatorcontrib><creatorcontrib>Shen, Haolan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Tongyao</au><au>Luo, Yifei</au><au>Liu, Binli</au><au>Shi, Zenan</au><au>Shen, Haolan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Reduced-Order Decoupling Method Applied to Efficient Junction Temperature Simulation Model in Multichip Devices</atitle><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>11</volume><issue>5</issue><spage>5405</spage><epage>5416</epage><pages>5405-5416</pages><issn>2168-6777</issn><eissn>2168-6785</eissn><abstract>As the power density of power modules increases, the cross-heating effects in multichip modules become severe, which intensifies the local overheating stress. To accurately predict the dynamic thermal characteristics of the multichip modules, this article establishes the mathematical relationship between the resistance–capacitance (RC) parameters and the thermal diffusion angle to obtain accurate RC parameters. The decoupling of the self-heating and cross-heating effects is realized according to the dynamic power flow in the RC thermal network, reducing the transient thermal impedance matrix to the steady-state thermal resistance matrix. In this way, the 3-D cross-heating effect on the junction temperature is characterized by the 1-D RC thermal network. Then, an efficient junction temperature simulation model based on the reduced-order decoupling method is proposed. This article also identifies the variation law of RC parameters with boundary conditions. Compared with existing models that need transient information, the model parameter extraction process requires only the steady-state information of the finite-element method (FEM) and fewer RC parameters, which improves the parameter extraction efficiency by more than [Formula Omitted]. In addition, compared with the FEM model, the transient junction temperature prediction efficiency is improved by more than [Formula Omitted]. Finally, based on a 1200-V/50-A half-bridge module, an electrothermal coupling model is constructed and applied to a three-phase two-stage inverter circuit. The results verify the accuracy and effectiveness of the proposed model, demonstrating that the junction temperature error between the proposed model and the experimental result is less than 5%.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/JESTPE.2023.3288125</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9214-2182</orcidid><orcidid>https://orcid.org/0000-0003-4608-1208</orcidid><orcidid>https://orcid.org/0000-0001-6204-7945</orcidid><orcidid>https://orcid.org/0000-0003-0848-8605</orcidid><orcidid>https://orcid.org/0000-0002-2592-4328</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-6777
ispartof IEEE journal of emerging and selected topics in power electronics, 2023-10, Vol.11 (5), p.5405-5416
issn 2168-6777
2168-6785
language eng
recordid cdi_proquest_journals_2872434929
source IEEE Xplore
subjects Boundary conditions
Decoupling method
Finite element method
Heating
High temperature effects
Impedance matrix
Model reduction
Multichip modules
Overheating
Parameter identification
Power flow
Reduced order models
Simulation models
State (computer science)
Steady state
Thermal diffusion
Thermal resistance
title A Reduced-Order Decoupling Method Applied to Efficient Junction Temperature Simulation Model in Multichip Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A03%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Reduced-Order%20Decoupling%20Method%20Applied%20to%20Efficient%20Junction%20Temperature%20Simulation%20Model%20in%20Multichip%20Devices&rft.jtitle=IEEE%20journal%20of%20emerging%20and%20selected%20topics%20in%20power%20electronics&rft.au=Han,%20Tongyao&rft.date=2023-10-01&rft.volume=11&rft.issue=5&rft.spage=5405&rft.epage=5416&rft.pages=5405-5416&rft.issn=2168-6777&rft.eissn=2168-6785&rft_id=info:doi/10.1109/JESTPE.2023.3288125&rft_dat=%3Cproquest_cross%3E2872434929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2872434929&rft_id=info:pmid/&rfr_iscdi=true