System of student attendance with IoT-based face identification using Raspberry Pi

Attendance is one way to control and monitor students while learning at school. It is important since attendance may also improve students learning. However, many schools still use manual ways to record student attendance. This research aims to develop an attendance system for students with face det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Renaldi, Muhammad Dimas, Sukirman
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2886
creator Renaldi, Muhammad Dimas
Sukirman
description Attendance is one way to control and monitor students while learning at school. It is important since attendance may also improve students learning. However, many schools still use manual ways to record student attendance. This research aims to develop an attendance system for students with face detection based on the Internet of Things (IoT). We use the OpenCV library embedded in Raspberry Pi to identify student faces, record, and place it. The algorithm for detecting faces uses Haar Cascade, while face recognition uses Local Binary Pattern Histograms (LBPH). The attendance records are then saved to MySQL database and the attendance reports are displayed on web browsers. The method employed in this research consists of several stages, namely Analysis, Design, Development, Implementation, and Evaluate (ADDIE). To evaluate the system, we use software and hardware system experts using black box tests to observe input and output performance and the resulting accuracy. Based on the test results, the function of the IoT-based student attendance system using raspberry pi has run as expected.
doi_str_mv 10.1063/5.0154673
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2872425903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872425903</sourcerecordid><originalsourceid>FETCH-LOGICAL-p965-e1cc85f6250137309c823ff2dd46d599ded73410bb6cdd6d253ccf82e9a3d94d3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsH_0HAm7A139kcpfhRKCi1B28hmzfRFLu7brJI_72t9TQwPMwMg9A1JTNKFL-TM0KlUJqfoAmVklZaUXWKJoQYUTHB38_RRc4bQpjRup6g1dsul7DFXcS5jBDagl0poQXX-oB_UvnEi25dNS4HwNHtvXSAUkzeldS1eMyp_cArl_smDMMOv6ZLdBbdVw5X_zpF68eH9fy5Wr48Leb3y6o3SlaBel_LqJgklGtOjK8Zj5EBCAXSGAiguaCkaZQHUMAk9z7WLBjHwQjgU3RzjO2H7nsMudhNNw7tvtGyWjPBpCF8T90eqexT-Vts-yFt3bCzlNjDZVba_8v4L-X1XeU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2872425903</pqid></control><display><type>conference_proceeding</type><title>System of student attendance with IoT-based face identification using Raspberry Pi</title><source>AIP Journals Complete</source><creator>Renaldi, Muhammad Dimas ; Sukirman</creator><contributor>Ishartono, Naufal ; Waluyo, Mohamad ; Nurcahyo, Adi</contributor><creatorcontrib>Renaldi, Muhammad Dimas ; Sukirman ; Ishartono, Naufal ; Waluyo, Mohamad ; Nurcahyo, Adi</creatorcontrib><description>Attendance is one way to control and monitor students while learning at school. It is important since attendance may also improve students learning. However, many schools still use manual ways to record student attendance. This research aims to develop an attendance system for students with face detection based on the Internet of Things (IoT). We use the OpenCV library embedded in Raspberry Pi to identify student faces, record, and place it. The algorithm for detecting faces uses Haar Cascade, while face recognition uses Local Binary Pattern Histograms (LBPH). The attendance records are then saved to MySQL database and the attendance reports are displayed on web browsers. The method employed in this research consists of several stages, namely Analysis, Design, Development, Implementation, and Evaluate (ADDIE). To evaluate the system, we use software and hardware system experts using black box tests to observe input and output performance and the resulting accuracy. Based on the test results, the function of the IoT-based student attendance system using raspberry pi has run as expected.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0154673</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Face recognition ; Internet of Things ; Learning ; Students ; Time and attendance systems</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2886 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0154673$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Ishartono, Naufal</contributor><contributor>Waluyo, Mohamad</contributor><contributor>Nurcahyo, Adi</contributor><creatorcontrib>Renaldi, Muhammad Dimas</creatorcontrib><creatorcontrib>Sukirman</creatorcontrib><title>System of student attendance with IoT-based face identification using Raspberry Pi</title><title>AIP Conference Proceedings</title><description>Attendance is one way to control and monitor students while learning at school. It is important since attendance may also improve students learning. However, many schools still use manual ways to record student attendance. This research aims to develop an attendance system for students with face detection based on the Internet of Things (IoT). We use the OpenCV library embedded in Raspberry Pi to identify student faces, record, and place it. The algorithm for detecting faces uses Haar Cascade, while face recognition uses Local Binary Pattern Histograms (LBPH). The attendance records are then saved to MySQL database and the attendance reports are displayed on web browsers. The method employed in this research consists of several stages, namely Analysis, Design, Development, Implementation, and Evaluate (ADDIE). To evaluate the system, we use software and hardware system experts using black box tests to observe input and output performance and the resulting accuracy. Based on the test results, the function of the IoT-based student attendance system using raspberry pi has run as expected.</description><subject>Algorithms</subject><subject>Face recognition</subject><subject>Internet of Things</subject><subject>Learning</subject><subject>Students</subject><subject>Time and attendance systems</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEYhIMoWKsH_0HAm7A139kcpfhRKCi1B28hmzfRFLu7brJI_72t9TQwPMwMg9A1JTNKFL-TM0KlUJqfoAmVklZaUXWKJoQYUTHB38_RRc4bQpjRup6g1dsul7DFXcS5jBDagl0poQXX-oB_UvnEi25dNS4HwNHtvXSAUkzeldS1eMyp_cArl_smDMMOv6ZLdBbdVw5X_zpF68eH9fy5Wr48Leb3y6o3SlaBel_LqJgklGtOjK8Zj5EBCAXSGAiguaCkaZQHUMAk9z7WLBjHwQjgU3RzjO2H7nsMudhNNw7tvtGyWjPBpCF8T90eqexT-Vts-yFt3bCzlNjDZVba_8v4L-X1XeU</recordid><startdate>20231004</startdate><enddate>20231004</enddate><creator>Renaldi, Muhammad Dimas</creator><creator>Sukirman</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231004</creationdate><title>System of student attendance with IoT-based face identification using Raspberry Pi</title><author>Renaldi, Muhammad Dimas ; Sukirman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p965-e1cc85f6250137309c823ff2dd46d599ded73410bb6cdd6d253ccf82e9a3d94d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Face recognition</topic><topic>Internet of Things</topic><topic>Learning</topic><topic>Students</topic><topic>Time and attendance systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renaldi, Muhammad Dimas</creatorcontrib><creatorcontrib>Sukirman</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renaldi, Muhammad Dimas</au><au>Sukirman</au><au>Ishartono, Naufal</au><au>Waluyo, Mohamad</au><au>Nurcahyo, Adi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>System of student attendance with IoT-based face identification using Raspberry Pi</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-10-04</date><risdate>2023</risdate><volume>2886</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Attendance is one way to control and monitor students while learning at school. It is important since attendance may also improve students learning. However, many schools still use manual ways to record student attendance. This research aims to develop an attendance system for students with face detection based on the Internet of Things (IoT). We use the OpenCV library embedded in Raspberry Pi to identify student faces, record, and place it. The algorithm for detecting faces uses Haar Cascade, while face recognition uses Local Binary Pattern Histograms (LBPH). The attendance records are then saved to MySQL database and the attendance reports are displayed on web browsers. The method employed in this research consists of several stages, namely Analysis, Design, Development, Implementation, and Evaluate (ADDIE). To evaluate the system, we use software and hardware system experts using black box tests to observe input and output performance and the resulting accuracy. Based on the test results, the function of the IoT-based student attendance system using raspberry pi has run as expected.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0154673</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2023, Vol.2886 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2872425903
source AIP Journals Complete
subjects Algorithms
Face recognition
Internet of Things
Learning
Students
Time and attendance systems
title System of student attendance with IoT-based face identification using Raspberry Pi
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A22%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=System%20of%20student%20attendance%20with%20IoT-based%20face%20identification%20using%20Raspberry%20Pi&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Renaldi,%20Muhammad%20Dimas&rft.date=2023-10-04&rft.volume=2886&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0154673&rft_dat=%3Cproquest_scita%3E2872425903%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2872425903&rft_id=info:pmid/&rfr_iscdi=true