An adaptive license plate recognition framework for moving vehicles

The unprecedented increase in the number of vehicles and a proportionated increase in traffic abnormalities have led to inconsistencies in traffic regulation systems, causing a detrimental impact on human safety. As a result, the speed computation of fast-approaching vehicles along with the extracti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Singh, Guruanjan, Mehta, Krutik, Mishra, Apoorva, Chawla, Harnish, Shekokar, Narendra
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2794
creator Singh, Guruanjan
Mehta, Krutik
Mishra, Apoorva
Chawla, Harnish
Shekokar, Narendra
description The unprecedented increase in the number of vehicles and a proportionated increase in traffic abnormalities have led to inconsistencies in traffic regulation systems, causing a detrimental impact on human safety. As a result, the speed computation of fast-approaching vehicles along with the extraction of License Plate characters has now become one of the popular areas of study. In this paper, a collaborative framework has been proposed to anticipate the speed of the fast-approaching vehicle and extract the License Plate Characters of the vehicle. The proposed system primarily comprises three successive steps, Object detection which is performed using YOLOv5 (You Only Look Once) on the processed video stream, Vehicle Speed Estimation, and License Plate Recognition (LPR). The relative speed is determined using the relative distance travelled by the vehicle over consecutive frames. An absolute error of 0.98 km/hr was found when comparing the computed and actual world speeds. We have used WPOD-NET for localizing the license plate and in the final section, we obtain the results of baseline pertained models such as-MobileNet, Xception, and ResNet50. The highest overall system accuracy for Vehicle License Plate Recognition module is 90%.
doi_str_mv 10.1063/5.0165667
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2872425901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872425901</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-c8e665f859cc6b41efe77561465fef40a53c75659689ddbab28abf793e2f19ac3</originalsourceid><addsrcrecordid>eNotUEtLAzEYDKLgWj34DwLehK15bJLNsSy-oOBFwVvIpl9q6nazJtuK_94t7WmYYZgZBqFbSuaUSP4g5oRKIaU6QwUVgpZKUnmOCkJ0VbKKf16iq5w3hDCtVF2gZtFju7LDGPaAu-Cgz4CHzo6AE7i47sMYYo99slv4jekb-5jwNu5Dv8Z7-Aqug3yNLrztMtyccIY-nh7fm5dy-fb82iyW5UA5H0tXg5TC10I7J9uKggelhKTVJIKviBXcTVxoWevVqrUtq23rlebAPNXW8Rm6O-YOKf7sII9mE3epnyoNqxWrmNCETq77oyu7MNrDejOksLXpz1BiDicZYU4n8X9y0VlW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2872425901</pqid></control><display><type>conference_proceeding</type><title>An adaptive license plate recognition framework for moving vehicles</title><source>American Institute of Physics (AIP) Journals</source><creator>Singh, Guruanjan ; Mehta, Krutik ; Mishra, Apoorva ; Chawla, Harnish ; Shekokar, Narendra</creator><contributor>Vulapula, Sridhar Reddy ; Ganesh, S.N.V. ; Kumar, Budati Anil</contributor><creatorcontrib>Singh, Guruanjan ; Mehta, Krutik ; Mishra, Apoorva ; Chawla, Harnish ; Shekokar, Narendra ; Vulapula, Sridhar Reddy ; Ganesh, S.N.V. ; Kumar, Budati Anil</creatorcontrib><description>The unprecedented increase in the number of vehicles and a proportionated increase in traffic abnormalities have led to inconsistencies in traffic regulation systems, causing a detrimental impact on human safety. As a result, the speed computation of fast-approaching vehicles along with the extraction of License Plate characters has now become one of the popular areas of study. In this paper, a collaborative framework has been proposed to anticipate the speed of the fast-approaching vehicle and extract the License Plate Characters of the vehicle. The proposed system primarily comprises three successive steps, Object detection which is performed using YOLOv5 (You Only Look Once) on the processed video stream, Vehicle Speed Estimation, and License Plate Recognition (LPR). The relative speed is determined using the relative distance travelled by the vehicle over consecutive frames. An absolute error of 0.98 km/hr was found when comparing the computed and actual world speeds. We have used WPOD-NET for localizing the license plate and in the final section, we obtain the results of baseline pertained models such as-MobileNet, Xception, and ResNet50. The highest overall system accuracy for Vehicle License Plate Recognition module is 90%.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0165667</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Abnormalities ; License plates ; Licenses ; Object recognition ; Traffic speed ; Vehicle identification ; Vehicles ; Video data</subject><ispartof>AIP conference proceedings, 2023, Vol.2794 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0165667$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76131</link.rule.ids></links><search><contributor>Vulapula, Sridhar Reddy</contributor><contributor>Ganesh, S.N.V.</contributor><contributor>Kumar, Budati Anil</contributor><creatorcontrib>Singh, Guruanjan</creatorcontrib><creatorcontrib>Mehta, Krutik</creatorcontrib><creatorcontrib>Mishra, Apoorva</creatorcontrib><creatorcontrib>Chawla, Harnish</creatorcontrib><creatorcontrib>Shekokar, Narendra</creatorcontrib><title>An adaptive license plate recognition framework for moving vehicles</title><title>AIP conference proceedings</title><description>The unprecedented increase in the number of vehicles and a proportionated increase in traffic abnormalities have led to inconsistencies in traffic regulation systems, causing a detrimental impact on human safety. As a result, the speed computation of fast-approaching vehicles along with the extraction of License Plate characters has now become one of the popular areas of study. In this paper, a collaborative framework has been proposed to anticipate the speed of the fast-approaching vehicle and extract the License Plate Characters of the vehicle. The proposed system primarily comprises three successive steps, Object detection which is performed using YOLOv5 (You Only Look Once) on the processed video stream, Vehicle Speed Estimation, and License Plate Recognition (LPR). The relative speed is determined using the relative distance travelled by the vehicle over consecutive frames. An absolute error of 0.98 km/hr was found when comparing the computed and actual world speeds. We have used WPOD-NET for localizing the license plate and in the final section, we obtain the results of baseline pertained models such as-MobileNet, Xception, and ResNet50. The highest overall system accuracy for Vehicle License Plate Recognition module is 90%.</description><subject>Abnormalities</subject><subject>License plates</subject><subject>Licenses</subject><subject>Object recognition</subject><subject>Traffic speed</subject><subject>Vehicle identification</subject><subject>Vehicles</subject><subject>Video data</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUEtLAzEYDKLgWj34DwLehK15bJLNsSy-oOBFwVvIpl9q6nazJtuK_94t7WmYYZgZBqFbSuaUSP4g5oRKIaU6QwUVgpZKUnmOCkJ0VbKKf16iq5w3hDCtVF2gZtFju7LDGPaAu-Cgz4CHzo6AE7i47sMYYo99slv4jekb-5jwNu5Dv8Z7-Aqug3yNLrztMtyccIY-nh7fm5dy-fb82iyW5UA5H0tXg5TC10I7J9uKggelhKTVJIKviBXcTVxoWevVqrUtq23rlebAPNXW8Rm6O-YOKf7sII9mE3epnyoNqxWrmNCETq77oyu7MNrDejOksLXpz1BiDicZYU4n8X9y0VlW</recordid><startdate>20231004</startdate><enddate>20231004</enddate><creator>Singh, Guruanjan</creator><creator>Mehta, Krutik</creator><creator>Mishra, Apoorva</creator><creator>Chawla, Harnish</creator><creator>Shekokar, Narendra</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231004</creationdate><title>An adaptive license plate recognition framework for moving vehicles</title><author>Singh, Guruanjan ; Mehta, Krutik ; Mishra, Apoorva ; Chawla, Harnish ; Shekokar, Narendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-c8e665f859cc6b41efe77561465fef40a53c75659689ddbab28abf793e2f19ac3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abnormalities</topic><topic>License plates</topic><topic>Licenses</topic><topic>Object recognition</topic><topic>Traffic speed</topic><topic>Vehicle identification</topic><topic>Vehicles</topic><topic>Video data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Guruanjan</creatorcontrib><creatorcontrib>Mehta, Krutik</creatorcontrib><creatorcontrib>Mishra, Apoorva</creatorcontrib><creatorcontrib>Chawla, Harnish</creatorcontrib><creatorcontrib>Shekokar, Narendra</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Guruanjan</au><au>Mehta, Krutik</au><au>Mishra, Apoorva</au><au>Chawla, Harnish</au><au>Shekokar, Narendra</au><au>Vulapula, Sridhar Reddy</au><au>Ganesh, S.N.V.</au><au>Kumar, Budati Anil</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An adaptive license plate recognition framework for moving vehicles</atitle><btitle>AIP conference proceedings</btitle><date>2023-10-04</date><risdate>2023</risdate><volume>2794</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The unprecedented increase in the number of vehicles and a proportionated increase in traffic abnormalities have led to inconsistencies in traffic regulation systems, causing a detrimental impact on human safety. As a result, the speed computation of fast-approaching vehicles along with the extraction of License Plate characters has now become one of the popular areas of study. In this paper, a collaborative framework has been proposed to anticipate the speed of the fast-approaching vehicle and extract the License Plate Characters of the vehicle. The proposed system primarily comprises three successive steps, Object detection which is performed using YOLOv5 (You Only Look Once) on the processed video stream, Vehicle Speed Estimation, and License Plate Recognition (LPR). The relative speed is determined using the relative distance travelled by the vehicle over consecutive frames. An absolute error of 0.98 km/hr was found when comparing the computed and actual world speeds. We have used WPOD-NET for localizing the license plate and in the final section, we obtain the results of baseline pertained models such as-MobileNet, Xception, and ResNet50. The highest overall system accuracy for Vehicle License Plate Recognition module is 90%.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0165667</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2794 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2872425901
source American Institute of Physics (AIP) Journals
subjects Abnormalities
License plates
Licenses
Object recognition
Traffic speed
Vehicle identification
Vehicles
Video data
title An adaptive license plate recognition framework for moving vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A38%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20adaptive%20license%20plate%20recognition%20framework%20for%20moving%20vehicles&rft.btitle=AIP%20conference%20proceedings&rft.au=Singh,%20Guruanjan&rft.date=2023-10-04&rft.volume=2794&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0165667&rft_dat=%3Cproquest_scita%3E2872425901%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2872425901&rft_id=info:pmid/&rfr_iscdi=true