Synthesis of Civil Aircraft Control Using Empirical Data and Quantum Filtering

This study presents a new approach to solving the problem of synthesis of civil aircraft control based on methods of providing intelligent support and assessing the level of crew training. This implies the representation of flight maneuvers by canonical multidimensional non-stationary models of moti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2023-06, Vol.44 (6), p.2079-2100
Hauptverfasser: Kuravsky, L. S., Greshnikov, I. I., Yuryev, G. A., Zlatomrezhev, V. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2100
container_issue 6
container_start_page 2079
container_title Lobachevskii journal of mathematics
container_volume 44
creator Kuravsky, L. S.
Greshnikov, I. I.
Yuryev, G. A.
Zlatomrezhev, V. I.
description This study presents a new approach to solving the problem of synthesis of civil aircraft control based on methods of providing intelligent support and assessing the level of crew training. This implies the representation of flight maneuvers by canonical multidimensional non-stationary models of motion with discrete time and their matrix coefficients identified by empirical data. When performing a flight maneuver in real time, its type is recognized, and then a pattern is extracted from a specialized database to provide the correct way out of the current flight situation. This pattern is the closest to the performed maneuver in the relevance metrics, which makes it possible to calculate the sequence of control parameter vectors according to the desired change in the sequence of the aircraft states. The most interesting in mathematical terms and promising from the viewpoint of practical application, the likelihood metric for trajectories of eigenvalues has provided worse recognition results than other metrics. The study reveals the causes of such a problem and proposes a method for its elimination—quantum filtering based on the analysis of spectra of matrix transformations of flight parameters, representing the aircraft behavior. Clearing these representations from a random ‘‘noise’’ caused by errors in sampling observation, quantum filtering significantly increases the efficiency of recognition of flight fragments compared to a method relying only on the likelihood metric. Applied quantum representations are purely theoretical constructions and do not require for their implementation special computational tools, providing quantum calculations in the usual sense.
doi_str_mv 10.1134/S1995080223060276
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2872245193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872245193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-eeafc44d30883a48e3216686d07b8a63c51b291330c36b8c5ae4290a5e0ef3823</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvA82oms5smx7K2KhRFas9LmmY1Zbu7Jlmh_96UCh7E0wy8771hHiHXwG4BML9bglIFk4xzZILxiTghI5AgM6UEP017krODfk4uQtiyBAohRuR5uW_jhw0u0K6mpftyDZ06b7yuIy27Nvquoavg2nc62_XOO6Mbeq-jprrd0NdBt3HY0blrovUJuiRntW6CvfqZY7Kaz97Kx2zx8vBUTheZQRAxs1bXJs83yKREnUuLHISQYsMma6kFmgLWXAEiMyjW0hTa5lwxXVhma5Qcx-TmmNv77nOwIVbbbvBtOllxOeE8L0BhouBIGd-F4G1d9d7ttN9XwKpDbdWf2pKHHz2hPzxk_W_y_6Zv5aBteQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872245193</pqid></control><display><type>article</type><title>Synthesis of Civil Aircraft Control Using Empirical Data and Quantum Filtering</title><source>Springer Nature - Complete Springer Journals</source><creator>Kuravsky, L. S. ; Greshnikov, I. I. ; Yuryev, G. A. ; Zlatomrezhev, V. I.</creator><creatorcontrib>Kuravsky, L. S. ; Greshnikov, I. I. ; Yuryev, G. A. ; Zlatomrezhev, V. I.</creatorcontrib><description>This study presents a new approach to solving the problem of synthesis of civil aircraft control based on methods of providing intelligent support and assessing the level of crew training. This implies the representation of flight maneuvers by canonical multidimensional non-stationary models of motion with discrete time and their matrix coefficients identified by empirical data. When performing a flight maneuver in real time, its type is recognized, and then a pattern is extracted from a specialized database to provide the correct way out of the current flight situation. This pattern is the closest to the performed maneuver in the relevance metrics, which makes it possible to calculate the sequence of control parameter vectors according to the desired change in the sequence of the aircraft states. The most interesting in mathematical terms and promising from the viewpoint of practical application, the likelihood metric for trajectories of eigenvalues has provided worse recognition results than other metrics. The study reveals the causes of such a problem and proposes a method for its elimination—quantum filtering based on the analysis of spectra of matrix transformations of flight parameters, representing the aircraft behavior. Clearing these representations from a random ‘‘noise’’ caused by errors in sampling observation, quantum filtering significantly increases the efficiency of recognition of flight fragments compared to a method relying only on the likelihood metric. Applied quantum representations are purely theoretical constructions and do not require for their implementation special computational tools, providing quantum calculations in the usual sense.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080223060276</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aircraft ; Aircraft control ; Aircraft maneuvers ; Algebra ; Analysis ; Eigenvalues ; Empirical analysis ; Filtration ; Flight ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Parameters ; Probability Theory and Stochastic Processes ; Recognition ; Representations ; Software ; Synthesis</subject><ispartof>Lobachevskii journal of mathematics, 2023-06, Vol.44 (6), p.2079-2100</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-eeafc44d30883a48e3216686d07b8a63c51b291330c36b8c5ae4290a5e0ef3823</citedby><cites>FETCH-LOGICAL-c316t-eeafc44d30883a48e3216686d07b8a63c51b291330c36b8c5ae4290a5e0ef3823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080223060276$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080223060276$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kuravsky, L. S.</creatorcontrib><creatorcontrib>Greshnikov, I. I.</creatorcontrib><creatorcontrib>Yuryev, G. A.</creatorcontrib><creatorcontrib>Zlatomrezhev, V. I.</creatorcontrib><title>Synthesis of Civil Aircraft Control Using Empirical Data and Quantum Filtering</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>This study presents a new approach to solving the problem of synthesis of civil aircraft control based on methods of providing intelligent support and assessing the level of crew training. This implies the representation of flight maneuvers by canonical multidimensional non-stationary models of motion with discrete time and their matrix coefficients identified by empirical data. When performing a flight maneuver in real time, its type is recognized, and then a pattern is extracted from a specialized database to provide the correct way out of the current flight situation. This pattern is the closest to the performed maneuver in the relevance metrics, which makes it possible to calculate the sequence of control parameter vectors according to the desired change in the sequence of the aircraft states. The most interesting in mathematical terms and promising from the viewpoint of practical application, the likelihood metric for trajectories of eigenvalues has provided worse recognition results than other metrics. The study reveals the causes of such a problem and proposes a method for its elimination—quantum filtering based on the analysis of spectra of matrix transformations of flight parameters, representing the aircraft behavior. Clearing these representations from a random ‘‘noise’’ caused by errors in sampling observation, quantum filtering significantly increases the efficiency of recognition of flight fragments compared to a method relying only on the likelihood metric. Applied quantum representations are purely theoretical constructions and do not require for their implementation special computational tools, providing quantum calculations in the usual sense.</description><subject>Aircraft</subject><subject>Aircraft control</subject><subject>Aircraft maneuvers</subject><subject>Algebra</subject><subject>Analysis</subject><subject>Eigenvalues</subject><subject>Empirical analysis</subject><subject>Filtration</subject><subject>Flight</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameters</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Recognition</subject><subject>Representations</subject><subject>Software</subject><subject>Synthesis</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wFvA82oms5smx7K2KhRFas9LmmY1Zbu7Jlmh_96UCh7E0wy8771hHiHXwG4BML9bglIFk4xzZILxiTghI5AgM6UEP017krODfk4uQtiyBAohRuR5uW_jhw0u0K6mpftyDZ06b7yuIy27Nvquoavg2nc62_XOO6Mbeq-jprrd0NdBt3HY0blrovUJuiRntW6CvfqZY7Kaz97Kx2zx8vBUTheZQRAxs1bXJs83yKREnUuLHISQYsMma6kFmgLWXAEiMyjW0hTa5lwxXVhma5Qcx-TmmNv77nOwIVbbbvBtOllxOeE8L0BhouBIGd-F4G1d9d7ttN9XwKpDbdWf2pKHHz2hPzxk_W_y_6Zv5aBteQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Kuravsky, L. S.</creator><creator>Greshnikov, I. I.</creator><creator>Yuryev, G. A.</creator><creator>Zlatomrezhev, V. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>Synthesis of Civil Aircraft Control Using Empirical Data and Quantum Filtering</title><author>Kuravsky, L. S. ; Greshnikov, I. I. ; Yuryev, G. A. ; Zlatomrezhev, V. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-eeafc44d30883a48e3216686d07b8a63c51b291330c36b8c5ae4290a5e0ef3823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aircraft</topic><topic>Aircraft control</topic><topic>Aircraft maneuvers</topic><topic>Algebra</topic><topic>Analysis</topic><topic>Eigenvalues</topic><topic>Empirical analysis</topic><topic>Filtration</topic><topic>Flight</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameters</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Recognition</topic><topic>Representations</topic><topic>Software</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuravsky, L. S.</creatorcontrib><creatorcontrib>Greshnikov, I. I.</creatorcontrib><creatorcontrib>Yuryev, G. A.</creatorcontrib><creatorcontrib>Zlatomrezhev, V. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuravsky, L. S.</au><au>Greshnikov, I. I.</au><au>Yuryev, G. A.</au><au>Zlatomrezhev, V. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Civil Aircraft Control Using Empirical Data and Quantum Filtering</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>44</volume><issue>6</issue><spage>2079</spage><epage>2100</epage><pages>2079-2100</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>This study presents a new approach to solving the problem of synthesis of civil aircraft control based on methods of providing intelligent support and assessing the level of crew training. This implies the representation of flight maneuvers by canonical multidimensional non-stationary models of motion with discrete time and their matrix coefficients identified by empirical data. When performing a flight maneuver in real time, its type is recognized, and then a pattern is extracted from a specialized database to provide the correct way out of the current flight situation. This pattern is the closest to the performed maneuver in the relevance metrics, which makes it possible to calculate the sequence of control parameter vectors according to the desired change in the sequence of the aircraft states. The most interesting in mathematical terms and promising from the viewpoint of practical application, the likelihood metric for trajectories of eigenvalues has provided worse recognition results than other metrics. The study reveals the causes of such a problem and proposes a method for its elimination—quantum filtering based on the analysis of spectra of matrix transformations of flight parameters, representing the aircraft behavior. Clearing these representations from a random ‘‘noise’’ caused by errors in sampling observation, quantum filtering significantly increases the efficiency of recognition of flight fragments compared to a method relying only on the likelihood metric. Applied quantum representations are purely theoretical constructions and do not require for their implementation special computational tools, providing quantum calculations in the usual sense.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080223060276</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2023-06, Vol.44 (6), p.2079-2100
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2872245193
source Springer Nature - Complete Springer Journals
subjects Aircraft
Aircraft control
Aircraft maneuvers
Algebra
Analysis
Eigenvalues
Empirical analysis
Filtration
Flight
Geometry
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Parameters
Probability Theory and Stochastic Processes
Recognition
Representations
Software
Synthesis
title Synthesis of Civil Aircraft Control Using Empirical Data and Quantum Filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Civil%20Aircraft%20Control%20Using%20Empirical%20Data%20and%20Quantum%20Filtering&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Kuravsky,%20L.%20S.&rft.date=2023-06-01&rft.volume=44&rft.issue=6&rft.spage=2079&rft.epage=2100&rft.pages=2079-2100&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080223060276&rft_dat=%3Cproquest_cross%3E2872245193%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2872245193&rft_id=info:pmid/&rfr_iscdi=true