‘‘Real’’ Subalgebras of -Algebras

In this paper we consider operator algebras generated by a free product of abelian semigroups. Such algebras are a noncommutative analog of uniform shift-invariant algebras on a compact abelian groups, that are ‘‘real’’ subalgebras of -algebras generated by the regular representation of free product...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2023, Vol.44 (6), p.2020-2026
Hauptverfasser: Grigoryan, T. A., Sharafutdinov, A. Sh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2026
container_issue 6
container_start_page 2020
container_title Lobachevskii journal of mathematics
container_volume 44
creator Grigoryan, T. A.
Sharafutdinov, A. Sh
description In this paper we consider operator algebras generated by a free product of abelian semigroups. Such algebras are a noncommutative analog of uniform shift-invariant algebras on a compact abelian groups, that are ‘‘real’’ subalgebras of -algebras generated by the regular representation of free products of abelian semigroups. We consider some properties of these algebras.
doi_str_mv 10.1134/S1995080223060197
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2872244938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872244938</sourcerecordid><originalsourceid>FETCH-LOGICAL-p156t-a15cc213dd094f55a167c02e42a0bc82d8333cc64f443a77b3b6034d601861313</originalsourceid><addsrcrecordid>eNplkM9Kw0AQxhdRsFYfwFvAk4fV-bPZ7B5L8R8UBKvnsNlsiiU0Ndvc-xj6en0St7TgQfhgZvh-zAyfENcId4is7udobQ4GiBg0oC1OxAgNGmmtptPUJ1vu_XNxEeMSEqi1Honb3fY76S24drf9ScrmQ-XaRah6F7OuyeTkOFyKs8a1MVwd61h8PD68T5_l7PXpZTqZyTXmeiMd5t4Tcl2DVU2eO9SFBwqKHFTeUG2Y2XutGqXYFUXFlQZWdXraaGTksbg57F333dcQ4qZcdkO_SidLMgWRUpZNouhAxXX_uVqE_o9CKPeRlP8i4V9fKVPs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872244938</pqid></control><display><type>article</type><title>‘‘Real’’ Subalgebras of -Algebras</title><source>SpringerLink Journals - AutoHoldings</source><creator>Grigoryan, T. A. ; Sharafutdinov, A. Sh</creator><creatorcontrib>Grigoryan, T. A. ; Sharafutdinov, A. Sh</creatorcontrib><description>In this paper we consider operator algebras generated by a free product of abelian semigroups. Such algebras are a noncommutative analog of uniform shift-invariant algebras on a compact abelian groups, that are ‘‘real’’ subalgebras of -algebras generated by the regular representation of free products of abelian semigroups. We consider some properties of these algebras.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080223060197</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Geometry ; Group theory ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Probability Theory and Stochastic Processes ; Semigroups</subject><ispartof>Lobachevskii journal of mathematics, 2023, Vol.44 (6), p.2020-2026</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p156t-a15cc213dd094f55a167c02e42a0bc82d8333cc64f443a77b3b6034d601861313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080223060197$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080223060197$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Grigoryan, T. A.</creatorcontrib><creatorcontrib>Sharafutdinov, A. Sh</creatorcontrib><title>‘‘Real’’ Subalgebras of -Algebras</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>In this paper we consider operator algebras generated by a free product of abelian semigroups. Such algebras are a noncommutative analog of uniform shift-invariant algebras on a compact abelian groups, that are ‘‘real’’ subalgebras of -algebras generated by the regular representation of free products of abelian semigroups. We consider some properties of these algebras.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Geometry</subject><subject>Group theory</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Semigroups</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNplkM9Kw0AQxhdRsFYfwFvAk4fV-bPZ7B5L8R8UBKvnsNlsiiU0Ndvc-xj6en0St7TgQfhgZvh-zAyfENcId4is7udobQ4GiBg0oC1OxAgNGmmtptPUJ1vu_XNxEeMSEqi1Honb3fY76S24drf9ScrmQ-XaRah6F7OuyeTkOFyKs8a1MVwd61h8PD68T5_l7PXpZTqZyTXmeiMd5t4Tcl2DVU2eO9SFBwqKHFTeUG2Y2XutGqXYFUXFlQZWdXraaGTksbg57F333dcQ4qZcdkO_SidLMgWRUpZNouhAxXX_uVqE_o9CKPeRlP8i4V9fKVPs</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Grigoryan, T. A.</creator><creator>Sharafutdinov, A. Sh</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2023</creationdate><title>‘‘Real’’ Subalgebras of -Algebras</title><author>Grigoryan, T. A. ; Sharafutdinov, A. Sh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p156t-a15cc213dd094f55a167c02e42a0bc82d8333cc64f443a77b3b6034d601861313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Geometry</topic><topic>Group theory</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Semigroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grigoryan, T. A.</creatorcontrib><creatorcontrib>Sharafutdinov, A. Sh</creatorcontrib><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grigoryan, T. A.</au><au>Sharafutdinov, A. Sh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>‘‘Real’’ Subalgebras of -Algebras</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2023</date><risdate>2023</risdate><volume>44</volume><issue>6</issue><spage>2020</spage><epage>2026</epage><pages>2020-2026</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>In this paper we consider operator algebras generated by a free product of abelian semigroups. Such algebras are a noncommutative analog of uniform shift-invariant algebras on a compact abelian groups, that are ‘‘real’’ subalgebras of -algebras generated by the regular representation of free products of abelian semigroups. We consider some properties of these algebras.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080223060197</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2023, Vol.44 (6), p.2020-2026
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2872244938
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Geometry
Group theory
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Operators (mathematics)
Probability Theory and Stochastic Processes
Semigroups
title ‘‘Real’’ Subalgebras of -Algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%80%98%E2%80%98Real%E2%80%99%E2%80%99%20Subalgebras%20of%20-Algebras&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Grigoryan,%20T.%20A.&rft.date=2023&rft.volume=44&rft.issue=6&rft.spage=2020&rft.epage=2026&rft.pages=2020-2026&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080223060197&rft_dat=%3Cproquest_sprin%3E2872244938%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2872244938&rft_id=info:pmid/&rfr_iscdi=true