Momentum‐innovation recursive least squares identification algorithm for a servo turntable system based on the output error model

In this article, the parameter identification problem of the output error model is investigated under the application requirement of online parameter identification of a two‐degree‐of‐freedom servo turntable system. To eliminate the influence of colored noise in the observed output signal of the out...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2023-11, Vol.33 (16), p.10111-10135
Hauptverfasser: Liu, Zhiwen, Cheng, Tianji, Han, Chongyang, Liu, Enhai, Wang, Ranjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10135
container_issue 16
container_start_page 10111
container_title International journal of robust and nonlinear control
container_volume 33
creator Liu, Zhiwen
Cheng, Tianji
Han, Chongyang
Liu, Enhai
Wang, Ranjun
description In this article, the parameter identification problem of the output error model is investigated under the application requirement of online parameter identification of a two‐degree‐of‐freedom servo turntable system. To eliminate the influence of colored noise in the observed output signal of the output error model on the algorithm identification accuracy, the momentum factor is introduced into the innovation term of the recursive least squares algorithm, and the momentum‐innovation recursive least squares (MI‐RLS) algorithm is proposed. Further, to improve the convergence speed and identification accuracy of the algorithm while avoiding increasing the algorithm complexity significantly, a reframed multi‐innovation strategy is introduced, and a momentum reframed multi‐innovation least squares (MR‐MILS) algorithm is developed. After analyzing the complexity of the proposed algorithms, the convergence performances of the two algorithms are verified using the theory of martingale convergence, and the results show that the reframed multi‐innovation strategy can accelerate the convergence speed of the MR‐MILS algorithm. The effectiveness of the proposed identification approach is demonstrated via simulation results.
doi_str_mv 10.1002/rnc.6892
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2872229776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872229776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-68eae0aac05a091f0c7d32bca4a2bdbab56adace51d4a716a3ef4a18b4c868c43</originalsourceid><addsrcrecordid>eNotkM1KAzEQgIMoWKvgIwS8eNmaZLf7c5TiH1S86HmZzc7alN1NO0kKvQm-gM_ok5hSTzPMfPPDx9i1FDMphLqjUc_yslInbCJFVSVSpdXpIc-qJJbTc3bh3FqI2FPZhH2_2gFHH4bfrx8zjnYH3tiRE-pAzuyQ9wjOc7cNQOi4aSNsOqOPGPSfloxfDbyzxIE7pJ3lPtDooemRu73zOPAGHLY88n6F3Aa_CZ4jURwZbIv9JTvroHd49R-n7OPx4X3xnCzfnl4W98tEK5n7JC8RUABoMQdRyU7ook1VoyED1bQNNPMcWtA4l20GhcwhxS4DWTaZLvNSZ-mU3Rz3bshuAzpfr218NZ6sVVkopaqiyCN1e6Q0WecIu3pDZgDa11LUB8V1VFwfFKd_iLV0vQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872229776</pqid></control><display><type>article</type><title>Momentum‐innovation recursive least squares identification algorithm for a servo turntable system based on the output error model</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Zhiwen ; Cheng, Tianji ; Han, Chongyang ; Liu, Enhai ; Wang, Ranjun</creator><creatorcontrib>Liu, Zhiwen ; Cheng, Tianji ; Han, Chongyang ; Liu, Enhai ; Wang, Ranjun</creatorcontrib><description>In this article, the parameter identification problem of the output error model is investigated under the application requirement of online parameter identification of a two‐degree‐of‐freedom servo turntable system. To eliminate the influence of colored noise in the observed output signal of the output error model on the algorithm identification accuracy, the momentum factor is introduced into the innovation term of the recursive least squares algorithm, and the momentum‐innovation recursive least squares (MI‐RLS) algorithm is proposed. Further, to improve the convergence speed and identification accuracy of the algorithm while avoiding increasing the algorithm complexity significantly, a reframed multi‐innovation strategy is introduced, and a momentum reframed multi‐innovation least squares (MR‐MILS) algorithm is developed. After analyzing the complexity of the proposed algorithms, the convergence performances of the two algorithms are verified using the theory of martingale convergence, and the results show that the reframed multi‐innovation strategy can accelerate the convergence speed of the MR‐MILS algorithm. The effectiveness of the proposed identification approach is demonstrated via simulation results.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.6892</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Accuracy ; Algorithms ; Complexity ; Convergence ; Error analysis ; Innovations ; Least squares ; Martingales ; Mathematical models ; Momentum ; Parameter identification ; Turntables</subject><ispartof>International journal of robust and nonlinear control, 2023-11, Vol.33 (16), p.10111-10135</ispartof><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-68eae0aac05a091f0c7d32bca4a2bdbab56adace51d4a716a3ef4a18b4c868c43</cites><orcidid>0000-0002-2910-1978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Liu, Zhiwen</creatorcontrib><creatorcontrib>Cheng, Tianji</creatorcontrib><creatorcontrib>Han, Chongyang</creatorcontrib><creatorcontrib>Liu, Enhai</creatorcontrib><creatorcontrib>Wang, Ranjun</creatorcontrib><title>Momentum‐innovation recursive least squares identification algorithm for a servo turntable system based on the output error model</title><title>International journal of robust and nonlinear control</title><description>In this article, the parameter identification problem of the output error model is investigated under the application requirement of online parameter identification of a two‐degree‐of‐freedom servo turntable system. To eliminate the influence of colored noise in the observed output signal of the output error model on the algorithm identification accuracy, the momentum factor is introduced into the innovation term of the recursive least squares algorithm, and the momentum‐innovation recursive least squares (MI‐RLS) algorithm is proposed. Further, to improve the convergence speed and identification accuracy of the algorithm while avoiding increasing the algorithm complexity significantly, a reframed multi‐innovation strategy is introduced, and a momentum reframed multi‐innovation least squares (MR‐MILS) algorithm is developed. After analyzing the complexity of the proposed algorithms, the convergence performances of the two algorithms are verified using the theory of martingale convergence, and the results show that the reframed multi‐innovation strategy can accelerate the convergence speed of the MR‐MILS algorithm. The effectiveness of the proposed identification approach is demonstrated via simulation results.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Complexity</subject><subject>Convergence</subject><subject>Error analysis</subject><subject>Innovations</subject><subject>Least squares</subject><subject>Martingales</subject><subject>Mathematical models</subject><subject>Momentum</subject><subject>Parameter identification</subject><subject>Turntables</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEQgIMoWKvgIwS8eNmaZLf7c5TiH1S86HmZzc7alN1NO0kKvQm-gM_ok5hSTzPMfPPDx9i1FDMphLqjUc_yslInbCJFVSVSpdXpIc-qJJbTc3bh3FqI2FPZhH2_2gFHH4bfrx8zjnYH3tiRE-pAzuyQ9wjOc7cNQOi4aSNsOqOPGPSfloxfDbyzxIE7pJ3lPtDooemRu73zOPAGHLY88n6F3Aa_CZ4jURwZbIv9JTvroHd49R-n7OPx4X3xnCzfnl4W98tEK5n7JC8RUABoMQdRyU7ook1VoyED1bQNNPMcWtA4l20GhcwhxS4DWTaZLvNSZ-mU3Rz3bshuAzpfr218NZ6sVVkopaqiyCN1e6Q0WecIu3pDZgDa11LUB8V1VFwfFKd_iLV0vQ</recordid><startdate>20231110</startdate><enddate>20231110</enddate><creator>Liu, Zhiwen</creator><creator>Cheng, Tianji</creator><creator>Han, Chongyang</creator><creator>Liu, Enhai</creator><creator>Wang, Ranjun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2910-1978</orcidid></search><sort><creationdate>20231110</creationdate><title>Momentum‐innovation recursive least squares identification algorithm for a servo turntable system based on the output error model</title><author>Liu, Zhiwen ; Cheng, Tianji ; Han, Chongyang ; Liu, Enhai ; Wang, Ranjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-68eae0aac05a091f0c7d32bca4a2bdbab56adace51d4a716a3ef4a18b4c868c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Complexity</topic><topic>Convergence</topic><topic>Error analysis</topic><topic>Innovations</topic><topic>Least squares</topic><topic>Martingales</topic><topic>Mathematical models</topic><topic>Momentum</topic><topic>Parameter identification</topic><topic>Turntables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhiwen</creatorcontrib><creatorcontrib>Cheng, Tianji</creatorcontrib><creatorcontrib>Han, Chongyang</creatorcontrib><creatorcontrib>Liu, Enhai</creatorcontrib><creatorcontrib>Wang, Ranjun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhiwen</au><au>Cheng, Tianji</au><au>Han, Chongyang</au><au>Liu, Enhai</au><au>Wang, Ranjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Momentum‐innovation recursive least squares identification algorithm for a servo turntable system based on the output error model</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2023-11-10</date><risdate>2023</risdate><volume>33</volume><issue>16</issue><spage>10111</spage><epage>10135</epage><pages>10111-10135</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>In this article, the parameter identification problem of the output error model is investigated under the application requirement of online parameter identification of a two‐degree‐of‐freedom servo turntable system. To eliminate the influence of colored noise in the observed output signal of the output error model on the algorithm identification accuracy, the momentum factor is introduced into the innovation term of the recursive least squares algorithm, and the momentum‐innovation recursive least squares (MI‐RLS) algorithm is proposed. Further, to improve the convergence speed and identification accuracy of the algorithm while avoiding increasing the algorithm complexity significantly, a reframed multi‐innovation strategy is introduced, and a momentum reframed multi‐innovation least squares (MR‐MILS) algorithm is developed. After analyzing the complexity of the proposed algorithms, the convergence performances of the two algorithms are verified using the theory of martingale convergence, and the results show that the reframed multi‐innovation strategy can accelerate the convergence speed of the MR‐MILS algorithm. The effectiveness of the proposed identification approach is demonstrated via simulation results.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.6892</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-2910-1978</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2023-11, Vol.33 (16), p.10111-10135
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_2872229776
source Wiley Online Library Journals Frontfile Complete
subjects Accuracy
Algorithms
Complexity
Convergence
Error analysis
Innovations
Least squares
Martingales
Mathematical models
Momentum
Parameter identification
Turntables
title Momentum‐innovation recursive least squares identification algorithm for a servo turntable system based on the output error model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Momentum%E2%80%90innovation%20recursive%20least%20squares%20identification%20algorithm%20for%20a%20servo%20turntable%20system%20based%20on%20the%20output%20error%20model&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Liu,%20Zhiwen&rft.date=2023-11-10&rft.volume=33&rft.issue=16&rft.spage=10111&rft.epage=10135&rft.pages=10111-10135&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.6892&rft_dat=%3Cproquest_cross%3E2872229776%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2872229776&rft_id=info:pmid/&rfr_iscdi=true