Momentum‐innovation recursive least squares identification algorithm for a servo turntable system based on the output error model
In this article, the parameter identification problem of the output error model is investigated under the application requirement of online parameter identification of a two‐degree‐of‐freedom servo turntable system. To eliminate the influence of colored noise in the observed output signal of the out...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2023-11, Vol.33 (16), p.10111-10135 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10135 |
---|---|
container_issue | 16 |
container_start_page | 10111 |
container_title | International journal of robust and nonlinear control |
container_volume | 33 |
creator | Liu, Zhiwen Cheng, Tianji Han, Chongyang Liu, Enhai Wang, Ranjun |
description | In this article, the parameter identification problem of the output error model is investigated under the application requirement of online parameter identification of a two‐degree‐of‐freedom servo turntable system. To eliminate the influence of colored noise in the observed output signal of the output error model on the algorithm identification accuracy, the momentum factor is introduced into the innovation term of the recursive least squares algorithm, and the momentum‐innovation recursive least squares (MI‐RLS) algorithm is proposed. Further, to improve the convergence speed and identification accuracy of the algorithm while avoiding increasing the algorithm complexity significantly, a reframed multi‐innovation strategy is introduced, and a momentum reframed multi‐innovation least squares (MR‐MILS) algorithm is developed. After analyzing the complexity of the proposed algorithms, the convergence performances of the two algorithms are verified using the theory of martingale convergence, and the results show that the reframed multi‐innovation strategy can accelerate the convergence speed of the MR‐MILS algorithm. The effectiveness of the proposed identification approach is demonstrated via simulation results. |
doi_str_mv | 10.1002/rnc.6892 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2872229776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872229776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-68eae0aac05a091f0c7d32bca4a2bdbab56adace51d4a716a3ef4a18b4c868c43</originalsourceid><addsrcrecordid>eNotkM1KAzEQgIMoWKvgIwS8eNmaZLf7c5TiH1S86HmZzc7alN1NO0kKvQm-gM_ok5hSTzPMfPPDx9i1FDMphLqjUc_yslInbCJFVSVSpdXpIc-qJJbTc3bh3FqI2FPZhH2_2gFHH4bfrx8zjnYH3tiRE-pAzuyQ9wjOc7cNQOi4aSNsOqOPGPSfloxfDbyzxIE7pJ3lPtDooemRu73zOPAGHLY88n6F3Aa_CZ4jURwZbIv9JTvroHd49R-n7OPx4X3xnCzfnl4W98tEK5n7JC8RUABoMQdRyU7ook1VoyED1bQNNPMcWtA4l20GhcwhxS4DWTaZLvNSZ-mU3Rz3bshuAzpfr218NZ6sVVkopaqiyCN1e6Q0WecIu3pDZgDa11LUB8V1VFwfFKd_iLV0vQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872229776</pqid></control><display><type>article</type><title>Momentum‐innovation recursive least squares identification algorithm for a servo turntable system based on the output error model</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Zhiwen ; Cheng, Tianji ; Han, Chongyang ; Liu, Enhai ; Wang, Ranjun</creator><creatorcontrib>Liu, Zhiwen ; Cheng, Tianji ; Han, Chongyang ; Liu, Enhai ; Wang, Ranjun</creatorcontrib><description>In this article, the parameter identification problem of the output error model is investigated under the application requirement of online parameter identification of a two‐degree‐of‐freedom servo turntable system. To eliminate the influence of colored noise in the observed output signal of the output error model on the algorithm identification accuracy, the momentum factor is introduced into the innovation term of the recursive least squares algorithm, and the momentum‐innovation recursive least squares (MI‐RLS) algorithm is proposed. Further, to improve the convergence speed and identification accuracy of the algorithm while avoiding increasing the algorithm complexity significantly, a reframed multi‐innovation strategy is introduced, and a momentum reframed multi‐innovation least squares (MR‐MILS) algorithm is developed. After analyzing the complexity of the proposed algorithms, the convergence performances of the two algorithms are verified using the theory of martingale convergence, and the results show that the reframed multi‐innovation strategy can accelerate the convergence speed of the MR‐MILS algorithm. The effectiveness of the proposed identification approach is demonstrated via simulation results.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.6892</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Accuracy ; Algorithms ; Complexity ; Convergence ; Error analysis ; Innovations ; Least squares ; Martingales ; Mathematical models ; Momentum ; Parameter identification ; Turntables</subject><ispartof>International journal of robust and nonlinear control, 2023-11, Vol.33 (16), p.10111-10135</ispartof><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-68eae0aac05a091f0c7d32bca4a2bdbab56adace51d4a716a3ef4a18b4c868c43</cites><orcidid>0000-0002-2910-1978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Liu, Zhiwen</creatorcontrib><creatorcontrib>Cheng, Tianji</creatorcontrib><creatorcontrib>Han, Chongyang</creatorcontrib><creatorcontrib>Liu, Enhai</creatorcontrib><creatorcontrib>Wang, Ranjun</creatorcontrib><title>Momentum‐innovation recursive least squares identification algorithm for a servo turntable system based on the output error model</title><title>International journal of robust and nonlinear control</title><description>In this article, the parameter identification problem of the output error model is investigated under the application requirement of online parameter identification of a two‐degree‐of‐freedom servo turntable system. To eliminate the influence of colored noise in the observed output signal of the output error model on the algorithm identification accuracy, the momentum factor is introduced into the innovation term of the recursive least squares algorithm, and the momentum‐innovation recursive least squares (MI‐RLS) algorithm is proposed. Further, to improve the convergence speed and identification accuracy of the algorithm while avoiding increasing the algorithm complexity significantly, a reframed multi‐innovation strategy is introduced, and a momentum reframed multi‐innovation least squares (MR‐MILS) algorithm is developed. After analyzing the complexity of the proposed algorithms, the convergence performances of the two algorithms are verified using the theory of martingale convergence, and the results show that the reframed multi‐innovation strategy can accelerate the convergence speed of the MR‐MILS algorithm. The effectiveness of the proposed identification approach is demonstrated via simulation results.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Complexity</subject><subject>Convergence</subject><subject>Error analysis</subject><subject>Innovations</subject><subject>Least squares</subject><subject>Martingales</subject><subject>Mathematical models</subject><subject>Momentum</subject><subject>Parameter identification</subject><subject>Turntables</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEQgIMoWKvgIwS8eNmaZLf7c5TiH1S86HmZzc7alN1NO0kKvQm-gM_ok5hSTzPMfPPDx9i1FDMphLqjUc_yslInbCJFVSVSpdXpIc-qJJbTc3bh3FqI2FPZhH2_2gFHH4bfrx8zjnYH3tiRE-pAzuyQ9wjOc7cNQOi4aSNsOqOPGPSfloxfDbyzxIE7pJ3lPtDooemRu73zOPAGHLY88n6F3Aa_CZ4jURwZbIv9JTvroHd49R-n7OPx4X3xnCzfnl4W98tEK5n7JC8RUABoMQdRyU7ook1VoyED1bQNNPMcWtA4l20GhcwhxS4DWTaZLvNSZ-mU3Rz3bshuAzpfr218NZ6sVVkopaqiyCN1e6Q0WecIu3pDZgDa11LUB8V1VFwfFKd_iLV0vQ</recordid><startdate>20231110</startdate><enddate>20231110</enddate><creator>Liu, Zhiwen</creator><creator>Cheng, Tianji</creator><creator>Han, Chongyang</creator><creator>Liu, Enhai</creator><creator>Wang, Ranjun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2910-1978</orcidid></search><sort><creationdate>20231110</creationdate><title>Momentum‐innovation recursive least squares identification algorithm for a servo turntable system based on the output error model</title><author>Liu, Zhiwen ; Cheng, Tianji ; Han, Chongyang ; Liu, Enhai ; Wang, Ranjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-68eae0aac05a091f0c7d32bca4a2bdbab56adace51d4a716a3ef4a18b4c868c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Complexity</topic><topic>Convergence</topic><topic>Error analysis</topic><topic>Innovations</topic><topic>Least squares</topic><topic>Martingales</topic><topic>Mathematical models</topic><topic>Momentum</topic><topic>Parameter identification</topic><topic>Turntables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhiwen</creatorcontrib><creatorcontrib>Cheng, Tianji</creatorcontrib><creatorcontrib>Han, Chongyang</creatorcontrib><creatorcontrib>Liu, Enhai</creatorcontrib><creatorcontrib>Wang, Ranjun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhiwen</au><au>Cheng, Tianji</au><au>Han, Chongyang</au><au>Liu, Enhai</au><au>Wang, Ranjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Momentum‐innovation recursive least squares identification algorithm for a servo turntable system based on the output error model</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2023-11-10</date><risdate>2023</risdate><volume>33</volume><issue>16</issue><spage>10111</spage><epage>10135</epage><pages>10111-10135</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>In this article, the parameter identification problem of the output error model is investigated under the application requirement of online parameter identification of a two‐degree‐of‐freedom servo turntable system. To eliminate the influence of colored noise in the observed output signal of the output error model on the algorithm identification accuracy, the momentum factor is introduced into the innovation term of the recursive least squares algorithm, and the momentum‐innovation recursive least squares (MI‐RLS) algorithm is proposed. Further, to improve the convergence speed and identification accuracy of the algorithm while avoiding increasing the algorithm complexity significantly, a reframed multi‐innovation strategy is introduced, and a momentum reframed multi‐innovation least squares (MR‐MILS) algorithm is developed. After analyzing the complexity of the proposed algorithms, the convergence performances of the two algorithms are verified using the theory of martingale convergence, and the results show that the reframed multi‐innovation strategy can accelerate the convergence speed of the MR‐MILS algorithm. The effectiveness of the proposed identification approach is demonstrated via simulation results.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.6892</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-2910-1978</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2023-11, Vol.33 (16), p.10111-10135 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_2872229776 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Accuracy Algorithms Complexity Convergence Error analysis Innovations Least squares Martingales Mathematical models Momentum Parameter identification Turntables |
title | Momentum‐innovation recursive least squares identification algorithm for a servo turntable system based on the output error model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Momentum%E2%80%90innovation%20recursive%20least%20squares%20identification%20algorithm%20for%20a%20servo%20turntable%20system%20based%20on%20the%20output%20error%20model&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Liu,%20Zhiwen&rft.date=2023-11-10&rft.volume=33&rft.issue=16&rft.spage=10111&rft.epage=10135&rft.pages=10111-10135&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.6892&rft_dat=%3Cproquest_cross%3E2872229776%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2872229776&rft_id=info:pmid/&rfr_iscdi=true |