Fabrication of Ni-MOFs/MWCNTs by in situ growth for high-performance supercapacitor electrode materials

Metal–organic frameworks (MOFs) have low conductivity, which is not conducive to further application. To address the issue, in this work, using carboxylation multiwall carbon nanotubes (MWCNTs-COOH) as carbon materials, benzene-1,4-dicarboxylic acid (PTA) as organic ligands, nickel nitrate hexahydra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2023-10, Vol.34 (28), p.1920, Article 1920
Hauptverfasser: Wang, Jia-Wei, Meng, Tian-Li, Ma, Ying-Xia, Lei, Lei, Li, Jing, Ran, Fen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 28
container_start_page 1920
container_title Journal of materials science. Materials in electronics
container_volume 34
creator Wang, Jia-Wei
Meng, Tian-Li
Ma, Ying-Xia
Lei, Lei
Li, Jing
Ran, Fen
description Metal–organic frameworks (MOFs) have low conductivity, which is not conducive to further application. To address the issue, in this work, using carboxylation multiwall carbon nanotubes (MWCNTs-COOH) as carbon materials, benzene-1,4-dicarboxylic acid (PTA) as organic ligands, nickel nitrate hexahydrate (Ni(NO 3 ) 2 ·6H 2 O) as transition metal ions precursors, MWCNTs decorated with nickel MOFs (Ni-MOFs/MWCNTs) nanohybrids were fabricated via in situ growth by a one-pot solvothermal method. The electrochemical properties of the Ni-MOFs/MWCNTs nanohybrids obtained by adjusting the dosage of MWCNTs-COOH and the experimental conditions as electrode materials for supercapacitors (SCs) were investigated. The results showed that the Ni-MOFs nanoflowers self-assembled by nanorods were in situ growth on the MWCNTs, which could avoid the agglomeration of Ni-MOFs and MWCNTs, enhance the specific surface area, and expose more active sites to improve the electrochemical properties. The specific capacity of the Ni-MOFs/MWCNTs nanohybrids as electrode materials obtained at the optimal experimental conditions was 749.6 C g −1 at 1.0 A g −1 .
doi_str_mv 10.1007/s10854-023-11286-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2871972454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2871972454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-92058c7e7f7b19a3a57c49cfa2d6fdab56364a1b0a98f6bbad25a55feb51ebbf3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKd_wKeAz3FJ2jTtowynwtxeJvoWkjTpMra2Jilj_95oBd98OvdyzzkXPgBuCb4nGPNZILhkOcI0Q4TQskDHMzAhjGcoL-nHOZjginGUM0ovwVUIO4xxkWflBDQLqbzTMrquhZ2FK4de14swe32frzYBqhN0LQwuDrDx3TFuoe083Lpmi3rj03yQrTYwDGnTspfaxXQ3e6Oj72oDDzIa7-Q-XIMLm8Tc_OoUvC0eN_NntFw_vcwflkhnpIqoopiVmhtuuSKVzCTjOq-0lbQubC0VK7Iil0RhWZW2UErWlEnGrFGMGKVsNgV3Y2_vu8_BhCh23eDb9FLQkpOK05zlyUVHl_ZdCN5Y0Xt3kP4kCBbfQMUIVCSg4geoOKZQNoZCMreN8X_V_6S-AGrYe18</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2871972454</pqid></control><display><type>article</type><title>Fabrication of Ni-MOFs/MWCNTs by in situ growth for high-performance supercapacitor electrode materials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Jia-Wei ; Meng, Tian-Li ; Ma, Ying-Xia ; Lei, Lei ; Li, Jing ; Ran, Fen</creator><creatorcontrib>Wang, Jia-Wei ; Meng, Tian-Li ; Ma, Ying-Xia ; Lei, Lei ; Li, Jing ; Ran, Fen</creatorcontrib><description>Metal–organic frameworks (MOFs) have low conductivity, which is not conducive to further application. To address the issue, in this work, using carboxylation multiwall carbon nanotubes (MWCNTs-COOH) as carbon materials, benzene-1,4-dicarboxylic acid (PTA) as organic ligands, nickel nitrate hexahydrate (Ni(NO 3 ) 2 ·6H 2 O) as transition metal ions precursors, MWCNTs decorated with nickel MOFs (Ni-MOFs/MWCNTs) nanohybrids were fabricated via in situ growth by a one-pot solvothermal method. The electrochemical properties of the Ni-MOFs/MWCNTs nanohybrids obtained by adjusting the dosage of MWCNTs-COOH and the experimental conditions as electrode materials for supercapacitors (SCs) were investigated. The results showed that the Ni-MOFs nanoflowers self-assembled by nanorods were in situ growth on the MWCNTs, which could avoid the agglomeration of Ni-MOFs and MWCNTs, enhance the specific surface area, and expose more active sites to improve the electrochemical properties. The specific capacity of the Ni-MOFs/MWCNTs nanohybrids as electrode materials obtained at the optimal experimental conditions was 749.6 C g −1 at 1.0 A g −1 .</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-11286-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Benzene ; Carboxylation ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Dicarboxylic acids ; Electrochemical analysis ; Electrode materials ; Electrodes ; Low conductivity ; Materials Science ; Metal-organic frameworks ; Multi wall carbon nanotubes ; Nanorods ; Nickel ; Optical and Electronic Materials ; Self-assembly ; Supercapacitors ; Terephthalic acid ; Transition metals</subject><ispartof>Journal of materials science. Materials in electronics, 2023-10, Vol.34 (28), p.1920, Article 1920</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-92058c7e7f7b19a3a57c49cfa2d6fdab56364a1b0a98f6bbad25a55feb51ebbf3</citedby><cites>FETCH-LOGICAL-c319t-92058c7e7f7b19a3a57c49cfa2d6fdab56364a1b0a98f6bbad25a55feb51ebbf3</cites><orcidid>0000-0002-1024-3968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-023-11286-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-023-11286-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Wang, Jia-Wei</creatorcontrib><creatorcontrib>Meng, Tian-Li</creatorcontrib><creatorcontrib>Ma, Ying-Xia</creatorcontrib><creatorcontrib>Lei, Lei</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Ran, Fen</creatorcontrib><title>Fabrication of Ni-MOFs/MWCNTs by in situ growth for high-performance supercapacitor electrode materials</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Metal–organic frameworks (MOFs) have low conductivity, which is not conducive to further application. To address the issue, in this work, using carboxylation multiwall carbon nanotubes (MWCNTs-COOH) as carbon materials, benzene-1,4-dicarboxylic acid (PTA) as organic ligands, nickel nitrate hexahydrate (Ni(NO 3 ) 2 ·6H 2 O) as transition metal ions precursors, MWCNTs decorated with nickel MOFs (Ni-MOFs/MWCNTs) nanohybrids were fabricated via in situ growth by a one-pot solvothermal method. The electrochemical properties of the Ni-MOFs/MWCNTs nanohybrids obtained by adjusting the dosage of MWCNTs-COOH and the experimental conditions as electrode materials for supercapacitors (SCs) were investigated. The results showed that the Ni-MOFs nanoflowers self-assembled by nanorods were in situ growth on the MWCNTs, which could avoid the agglomeration of Ni-MOFs and MWCNTs, enhance the specific surface area, and expose more active sites to improve the electrochemical properties. The specific capacity of the Ni-MOFs/MWCNTs nanohybrids as electrode materials obtained at the optimal experimental conditions was 749.6 C g −1 at 1.0 A g −1 .</description><subject>Benzene</subject><subject>Carboxylation</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Dicarboxylic acids</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Low conductivity</subject><subject>Materials Science</subject><subject>Metal-organic frameworks</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanorods</subject><subject>Nickel</subject><subject>Optical and Electronic Materials</subject><subject>Self-assembly</subject><subject>Supercapacitors</subject><subject>Terephthalic acid</subject><subject>Transition metals</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kFFLwzAUhYMoOKd_wKeAz3FJ2jTtowynwtxeJvoWkjTpMra2Jilj_95oBd98OvdyzzkXPgBuCb4nGPNZILhkOcI0Q4TQskDHMzAhjGcoL-nHOZjginGUM0ovwVUIO4xxkWflBDQLqbzTMrquhZ2FK4de14swe32frzYBqhN0LQwuDrDx3TFuoe083Lpmi3rj03yQrTYwDGnTspfaxXQ3e6Oj72oDDzIa7-Q-XIMLm8Tc_OoUvC0eN_NntFw_vcwflkhnpIqoopiVmhtuuSKVzCTjOq-0lbQubC0VK7Iil0RhWZW2UErWlEnGrFGMGKVsNgV3Y2_vu8_BhCh23eDb9FLQkpOK05zlyUVHl_ZdCN5Y0Xt3kP4kCBbfQMUIVCSg4geoOKZQNoZCMreN8X_V_6S-AGrYe18</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Wang, Jia-Wei</creator><creator>Meng, Tian-Li</creator><creator>Ma, Ying-Xia</creator><creator>Lei, Lei</creator><creator>Li, Jing</creator><creator>Ran, Fen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-1024-3968</orcidid></search><sort><creationdate>20231001</creationdate><title>Fabrication of Ni-MOFs/MWCNTs by in situ growth for high-performance supercapacitor electrode materials</title><author>Wang, Jia-Wei ; Meng, Tian-Li ; Ma, Ying-Xia ; Lei, Lei ; Li, Jing ; Ran, Fen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-92058c7e7f7b19a3a57c49cfa2d6fdab56364a1b0a98f6bbad25a55feb51ebbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Benzene</topic><topic>Carboxylation</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Dicarboxylic acids</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Low conductivity</topic><topic>Materials Science</topic><topic>Metal-organic frameworks</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanorods</topic><topic>Nickel</topic><topic>Optical and Electronic Materials</topic><topic>Self-assembly</topic><topic>Supercapacitors</topic><topic>Terephthalic acid</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jia-Wei</creatorcontrib><creatorcontrib>Meng, Tian-Li</creatorcontrib><creatorcontrib>Ma, Ying-Xia</creatorcontrib><creatorcontrib>Lei, Lei</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Ran, Fen</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jia-Wei</au><au>Meng, Tian-Li</au><au>Ma, Ying-Xia</au><au>Lei, Lei</au><au>Li, Jing</au><au>Ran, Fen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Ni-MOFs/MWCNTs by in situ growth for high-performance supercapacitor electrode materials</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>34</volume><issue>28</issue><spage>1920</spage><pages>1920-</pages><artnum>1920</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Metal–organic frameworks (MOFs) have low conductivity, which is not conducive to further application. To address the issue, in this work, using carboxylation multiwall carbon nanotubes (MWCNTs-COOH) as carbon materials, benzene-1,4-dicarboxylic acid (PTA) as organic ligands, nickel nitrate hexahydrate (Ni(NO 3 ) 2 ·6H 2 O) as transition metal ions precursors, MWCNTs decorated with nickel MOFs (Ni-MOFs/MWCNTs) nanohybrids were fabricated via in situ growth by a one-pot solvothermal method. The electrochemical properties of the Ni-MOFs/MWCNTs nanohybrids obtained by adjusting the dosage of MWCNTs-COOH and the experimental conditions as electrode materials for supercapacitors (SCs) were investigated. The results showed that the Ni-MOFs nanoflowers self-assembled by nanorods were in situ growth on the MWCNTs, which could avoid the agglomeration of Ni-MOFs and MWCNTs, enhance the specific surface area, and expose more active sites to improve the electrochemical properties. The specific capacity of the Ni-MOFs/MWCNTs nanohybrids as electrode materials obtained at the optimal experimental conditions was 749.6 C g −1 at 1.0 A g −1 .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-11286-w</doi><orcidid>https://orcid.org/0000-0002-1024-3968</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2023-10, Vol.34 (28), p.1920, Article 1920
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2871972454
source SpringerLink Journals - AutoHoldings
subjects Benzene
Carboxylation
Characterization and Evaluation of Materials
Chemistry and Materials Science
Dicarboxylic acids
Electrochemical analysis
Electrode materials
Electrodes
Low conductivity
Materials Science
Metal-organic frameworks
Multi wall carbon nanotubes
Nanorods
Nickel
Optical and Electronic Materials
Self-assembly
Supercapacitors
Terephthalic acid
Transition metals
title Fabrication of Ni-MOFs/MWCNTs by in situ growth for high-performance supercapacitor electrode materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Ni-MOFs/MWCNTs%20by%20in%20situ%20growth%20for%20high-performance%20supercapacitor%20electrode%20materials&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Wang,%20Jia-Wei&rft.date=2023-10-01&rft.volume=34&rft.issue=28&rft.spage=1920&rft.pages=1920-&rft.artnum=1920&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-11286-w&rft_dat=%3Cproquest_cross%3E2871972454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2871972454&rft_id=info:pmid/&rfr_iscdi=true