Uncertainty-aware hybrid paradigm of nonlinear MPC and model-based RL for offroad navigation: Exploration of transformers in the predictive model

In this paper, we investigate a hybrid scheme that combines nonlinear model predictive control (MPC) and model-based reinforcement learning (RL) for navigation planning of an autonomous model car across offroad, unstructured terrains without relying on predefined maps. Our innovative approach takes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-10
Hauptverfasser: Lotfi, Faraz, Virji, Khalil, Faraji, Farnoosh, Berry, Lucas, Holliday, Andrew, Meger, David, Dudek, Gregory
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lotfi, Faraz
Virji, Khalil
Faraji, Farnoosh
Berry, Lucas
Holliday, Andrew
Meger, David
Dudek, Gregory
description In this paper, we investigate a hybrid scheme that combines nonlinear model predictive control (MPC) and model-based reinforcement learning (RL) for navigation planning of an autonomous model car across offroad, unstructured terrains without relying on predefined maps. Our innovative approach takes inspiration from BADGR, an LSTM-based network that primarily concentrates on environment modeling, but distinguishes itself by substituting LSTM modules with transformers to greatly elevate the performance our model. Addressing uncertainty within the system, we train an ensemble of predictive models and estimate the mutual information between model weights and outputs, facilitating dynamic horizon planning through the introduction of variable speeds. Further enhancing our methodology, we incorporate a nonlinear MPC controller that accounts for the intricacies of the vehicle's model and states. The model-based RL facet produces steering angles and quantifies inherent uncertainty. At the same time, the nonlinear MPC suggests optimal throttle settings, striking a balance between goal attainment speed and managing model uncertainty influenced by velocity. In the conducted studies, our approach excels over the existing baseline by consistently achieving higher metric values in predicting future events and seamlessly integrating the vehicle's kinematic model for enhanced decision-making. The code and the evaluation data are available at https://github.com/FARAZLOTFI/offroad_autonomous_navigation/).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2871972350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2871972350</sourcerecordid><originalsourceid>FETCH-proquest_journals_28719723503</originalsourceid><addsrcrecordid>eNqNjE1KA0EQRhtBMMTcocD1wKTbcaLbEHGhIKLrUEnXJBVmqsbqTkyO4Y0dfw7g6uPxPd6ZG_kQpsXs2vsLN0lpV5alv6l9VYWR-3yTNVlGlnwq8AONYHtaGUfo0TDypgNtQFRaFkKDp-c5oEToNFJbrDBRhJdHaNQGrzHFCIIH3mBmlTtYHPtW7Qe-O9lQ0uB2ZAlYIG8JeqPI68wH-o1euvMG20STvx27q_vF6_yh6E3f95Tycqd7k-Fa-lk9va19qMrwP-sLRi1XSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2871972350</pqid></control><display><type>article</type><title>Uncertainty-aware hybrid paradigm of nonlinear MPC and model-based RL for offroad navigation: Exploration of transformers in the predictive model</title><source>Free E- Journals</source><creator>Lotfi, Faraz ; Virji, Khalil ; Faraji, Farnoosh ; Berry, Lucas ; Holliday, Andrew ; Meger, David ; Dudek, Gregory</creator><creatorcontrib>Lotfi, Faraz ; Virji, Khalil ; Faraji, Farnoosh ; Berry, Lucas ; Holliday, Andrew ; Meger, David ; Dudek, Gregory</creatorcontrib><description>In this paper, we investigate a hybrid scheme that combines nonlinear model predictive control (MPC) and model-based reinforcement learning (RL) for navigation planning of an autonomous model car across offroad, unstructured terrains without relying on predefined maps. Our innovative approach takes inspiration from BADGR, an LSTM-based network that primarily concentrates on environment modeling, but distinguishes itself by substituting LSTM modules with transformers to greatly elevate the performance our model. Addressing uncertainty within the system, we train an ensemble of predictive models and estimate the mutual information between model weights and outputs, facilitating dynamic horizon planning through the introduction of variable speeds. Further enhancing our methodology, we incorporate a nonlinear MPC controller that accounts for the intricacies of the vehicle's model and states. The model-based RL facet produces steering angles and quantifies inherent uncertainty. At the same time, the nonlinear MPC suggests optimal throttle settings, striking a balance between goal attainment speed and managing model uncertainty influenced by velocity. In the conducted studies, our approach excels over the existing baseline by consistently achieving higher metric values in predicting future events and seamlessly integrating the vehicle's kinematic model for enhanced decision-making. The code and the evaluation data are available at https://github.com/FARAZLOTFI/offroad_autonomous_navigation/).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autonomous navigation ; Environment models ; Kinematics ; Nonlinear control ; Prediction models ; Predictive control ; Steering ; Transformers ; Uncertainty</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Lotfi, Faraz</creatorcontrib><creatorcontrib>Virji, Khalil</creatorcontrib><creatorcontrib>Faraji, Farnoosh</creatorcontrib><creatorcontrib>Berry, Lucas</creatorcontrib><creatorcontrib>Holliday, Andrew</creatorcontrib><creatorcontrib>Meger, David</creatorcontrib><creatorcontrib>Dudek, Gregory</creatorcontrib><title>Uncertainty-aware hybrid paradigm of nonlinear MPC and model-based RL for offroad navigation: Exploration of transformers in the predictive model</title><title>arXiv.org</title><description>In this paper, we investigate a hybrid scheme that combines nonlinear model predictive control (MPC) and model-based reinforcement learning (RL) for navigation planning of an autonomous model car across offroad, unstructured terrains without relying on predefined maps. Our innovative approach takes inspiration from BADGR, an LSTM-based network that primarily concentrates on environment modeling, but distinguishes itself by substituting LSTM modules with transformers to greatly elevate the performance our model. Addressing uncertainty within the system, we train an ensemble of predictive models and estimate the mutual information between model weights and outputs, facilitating dynamic horizon planning through the introduction of variable speeds. Further enhancing our methodology, we incorporate a nonlinear MPC controller that accounts for the intricacies of the vehicle's model and states. The model-based RL facet produces steering angles and quantifies inherent uncertainty. At the same time, the nonlinear MPC suggests optimal throttle settings, striking a balance between goal attainment speed and managing model uncertainty influenced by velocity. In the conducted studies, our approach excels over the existing baseline by consistently achieving higher metric values in predicting future events and seamlessly integrating the vehicle's kinematic model for enhanced decision-making. The code and the evaluation data are available at https://github.com/FARAZLOTFI/offroad_autonomous_navigation/).</description><subject>Autonomous navigation</subject><subject>Environment models</subject><subject>Kinematics</subject><subject>Nonlinear control</subject><subject>Prediction models</subject><subject>Predictive control</subject><subject>Steering</subject><subject>Transformers</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjE1KA0EQRhtBMMTcocD1wKTbcaLbEHGhIKLrUEnXJBVmqsbqTkyO4Y0dfw7g6uPxPd6ZG_kQpsXs2vsLN0lpV5alv6l9VYWR-3yTNVlGlnwq8AONYHtaGUfo0TDypgNtQFRaFkKDp-c5oEToNFJbrDBRhJdHaNQGrzHFCIIH3mBmlTtYHPtW7Qe-O9lQ0uB2ZAlYIG8JeqPI68wH-o1euvMG20STvx27q_vF6_yh6E3f95Tycqd7k-Fa-lk9va19qMrwP-sLRi1XSw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Lotfi, Faraz</creator><creator>Virji, Khalil</creator><creator>Faraji, Farnoosh</creator><creator>Berry, Lucas</creator><creator>Holliday, Andrew</creator><creator>Meger, David</creator><creator>Dudek, Gregory</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231001</creationdate><title>Uncertainty-aware hybrid paradigm of nonlinear MPC and model-based RL for offroad navigation: Exploration of transformers in the predictive model</title><author>Lotfi, Faraz ; Virji, Khalil ; Faraji, Farnoosh ; Berry, Lucas ; Holliday, Andrew ; Meger, David ; Dudek, Gregory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28719723503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autonomous navigation</topic><topic>Environment models</topic><topic>Kinematics</topic><topic>Nonlinear control</topic><topic>Prediction models</topic><topic>Predictive control</topic><topic>Steering</topic><topic>Transformers</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Lotfi, Faraz</creatorcontrib><creatorcontrib>Virji, Khalil</creatorcontrib><creatorcontrib>Faraji, Farnoosh</creatorcontrib><creatorcontrib>Berry, Lucas</creatorcontrib><creatorcontrib>Holliday, Andrew</creatorcontrib><creatorcontrib>Meger, David</creatorcontrib><creatorcontrib>Dudek, Gregory</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lotfi, Faraz</au><au>Virji, Khalil</au><au>Faraji, Farnoosh</au><au>Berry, Lucas</au><au>Holliday, Andrew</au><au>Meger, David</au><au>Dudek, Gregory</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Uncertainty-aware hybrid paradigm of nonlinear MPC and model-based RL for offroad navigation: Exploration of transformers in the predictive model</atitle><jtitle>arXiv.org</jtitle><date>2023-10-01</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this paper, we investigate a hybrid scheme that combines nonlinear model predictive control (MPC) and model-based reinforcement learning (RL) for navigation planning of an autonomous model car across offroad, unstructured terrains without relying on predefined maps. Our innovative approach takes inspiration from BADGR, an LSTM-based network that primarily concentrates on environment modeling, but distinguishes itself by substituting LSTM modules with transformers to greatly elevate the performance our model. Addressing uncertainty within the system, we train an ensemble of predictive models and estimate the mutual information between model weights and outputs, facilitating dynamic horizon planning through the introduction of variable speeds. Further enhancing our methodology, we incorporate a nonlinear MPC controller that accounts for the intricacies of the vehicle's model and states. The model-based RL facet produces steering angles and quantifies inherent uncertainty. At the same time, the nonlinear MPC suggests optimal throttle settings, striking a balance between goal attainment speed and managing model uncertainty influenced by velocity. In the conducted studies, our approach excels over the existing baseline by consistently achieving higher metric values in predicting future events and seamlessly integrating the vehicle's kinematic model for enhanced decision-making. The code and the evaluation data are available at https://github.com/FARAZLOTFI/offroad_autonomous_navigation/).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2871972350
source Free E- Journals
subjects Autonomous navigation
Environment models
Kinematics
Nonlinear control
Prediction models
Predictive control
Steering
Transformers
Uncertainty
title Uncertainty-aware hybrid paradigm of nonlinear MPC and model-based RL for offroad navigation: Exploration of transformers in the predictive model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Uncertainty-aware%20hybrid%20paradigm%20of%20nonlinear%20MPC%20and%20model-based%20RL%20for%20offroad%20navigation:%20Exploration%20of%20transformers%20in%20the%20predictive%20model&rft.jtitle=arXiv.org&rft.au=Lotfi,%20Faraz&rft.date=2023-10-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2871972350%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2871972350&rft_id=info:pmid/&rfr_iscdi=true