The Gevrey class implicit mapping theorem with application to UQ of semilinear elliptic PDEs
This article is concerned with a regularity analysis of parametric operator equations with a perspective on uncertainty quantification. We study the regularity of mappings between Banach spaces near branches of isolated solutions that are implicitly defined by a residual equation. Under \(s\)-Gevrey...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Harbrecht, Helmut Schmidlin, Marc Schwab, Christoph |
description | This article is concerned with a regularity analysis of parametric operator equations with a perspective on uncertainty quantification. We study the regularity of mappings between Banach spaces near branches of isolated solutions that are implicitly defined by a residual equation. Under \(s\)-Gevrey assumptions on on the residual equation, we establish \(s\)-Gevrey bounds on the Fréchet derivatives of the local data-to-solution mapping. This abstract framework is illustrated in a proof of regularity bounds for a semilinear elliptic partial differential equation with parametric and random field input. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2871972343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2871972343</sourcerecordid><originalsourceid>FETCH-proquest_journals_28719723433</originalsourceid><addsrcrecordid>eNqNisEKgkAUAJcgSMp_eNBZ0F1NO5fVsaBugSzyzCeru-2uRX-fhz6g08DMzFjAhUiiIuV8wULnujiO-SbnWSYCdr-2CEd8WfxAraRzQL1RVJOHXhpDwwN8i9piD2_yLUxuqtKTHsBruF1AN-CwJ0UDSguoFBlPNZz3pVuxeSOVw_DHJVsfyuvuFBmrnyM6X3V6tMOUKl7kyTbnIhXiv-sLsbJDOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2871972343</pqid></control><display><type>article</type><title>The Gevrey class implicit mapping theorem with application to UQ of semilinear elliptic PDEs</title><source>Free E- Journals</source><creator>Harbrecht, Helmut ; Schmidlin, Marc ; Schwab, Christoph</creator><creatorcontrib>Harbrecht, Helmut ; Schmidlin, Marc ; Schwab, Christoph</creatorcontrib><description>This article is concerned with a regularity analysis of parametric operator equations with a perspective on uncertainty quantification. We study the regularity of mappings between Banach spaces near branches of isolated solutions that are implicitly defined by a residual equation. Under \(s\)-Gevrey assumptions on on the residual equation, we establish \(s\)-Gevrey bounds on the Fréchet derivatives of the local data-to-solution mapping. This abstract framework is illustrated in a proof of regularity bounds for a semilinear elliptic partial differential equation with parametric and random field input.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Banach spaces ; Fields (mathematics) ; Mapping ; Operators (mathematics) ; Partial differential equations ; Regularity</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Harbrecht, Helmut</creatorcontrib><creatorcontrib>Schmidlin, Marc</creatorcontrib><creatorcontrib>Schwab, Christoph</creatorcontrib><title>The Gevrey class implicit mapping theorem with application to UQ of semilinear elliptic PDEs</title><title>arXiv.org</title><description>This article is concerned with a regularity analysis of parametric operator equations with a perspective on uncertainty quantification. We study the regularity of mappings between Banach spaces near branches of isolated solutions that are implicitly defined by a residual equation. Under \(s\)-Gevrey assumptions on on the residual equation, we establish \(s\)-Gevrey bounds on the Fréchet derivatives of the local data-to-solution mapping. This abstract framework is illustrated in a proof of regularity bounds for a semilinear elliptic partial differential equation with parametric and random field input.</description><subject>Banach spaces</subject><subject>Fields (mathematics)</subject><subject>Mapping</subject><subject>Operators (mathematics)</subject><subject>Partial differential equations</subject><subject>Regularity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNisEKgkAUAJcgSMp_eNBZ0F1NO5fVsaBugSzyzCeru-2uRX-fhz6g08DMzFjAhUiiIuV8wULnujiO-SbnWSYCdr-2CEd8WfxAraRzQL1RVJOHXhpDwwN8i9piD2_yLUxuqtKTHsBruF1AN-CwJ0UDSguoFBlPNZz3pVuxeSOVw_DHJVsfyuvuFBmrnyM6X3V6tMOUKl7kyTbnIhXiv-sLsbJDOg</recordid><startdate>20231002</startdate><enddate>20231002</enddate><creator>Harbrecht, Helmut</creator><creator>Schmidlin, Marc</creator><creator>Schwab, Christoph</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231002</creationdate><title>The Gevrey class implicit mapping theorem with application to UQ of semilinear elliptic PDEs</title><author>Harbrecht, Helmut ; Schmidlin, Marc ; Schwab, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28719723433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Banach spaces</topic><topic>Fields (mathematics)</topic><topic>Mapping</topic><topic>Operators (mathematics)</topic><topic>Partial differential equations</topic><topic>Regularity</topic><toplevel>online_resources</toplevel><creatorcontrib>Harbrecht, Helmut</creatorcontrib><creatorcontrib>Schmidlin, Marc</creatorcontrib><creatorcontrib>Schwab, Christoph</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harbrecht, Helmut</au><au>Schmidlin, Marc</au><au>Schwab, Christoph</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Gevrey class implicit mapping theorem with application to UQ of semilinear elliptic PDEs</atitle><jtitle>arXiv.org</jtitle><date>2023-10-02</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This article is concerned with a regularity analysis of parametric operator equations with a perspective on uncertainty quantification. We study the regularity of mappings between Banach spaces near branches of isolated solutions that are implicitly defined by a residual equation. Under \(s\)-Gevrey assumptions on on the residual equation, we establish \(s\)-Gevrey bounds on the Fréchet derivatives of the local data-to-solution mapping. This abstract framework is illustrated in a proof of regularity bounds for a semilinear elliptic partial differential equation with parametric and random field input.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2871972343 |
source | Free E- Journals |
subjects | Banach spaces Fields (mathematics) Mapping Operators (mathematics) Partial differential equations Regularity |
title | The Gevrey class implicit mapping theorem with application to UQ of semilinear elliptic PDEs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Gevrey%20class%20implicit%20mapping%20theorem%20with%20application%20to%20UQ%20of%20semilinear%20elliptic%20PDEs&rft.jtitle=arXiv.org&rft.au=Harbrecht,%20Helmut&rft.date=2023-10-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2871972343%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2871972343&rft_id=info:pmid/&rfr_iscdi=true |