High Miscibility‐Induced Reduction of Trap Density in All‐Polymer Solar Cells Using Hybrid Cyclohexyl‐Hexyl Side Chains

Reducing the trap density within organic solar cells is of vital importance to realize high power conversion efficiency (PCE); however, research focusing on this aspect is limited in all‐polymer solar cells (All‐PSCs). In this work, it is found that the trap density can be dramatically reduced by si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-10, Vol.33 (40), p.n/a
Hauptverfasser: Sun, Fengbo, Wang, Xunchang, Wan, Ming, Liu, Zhitian, Luo, Yixuan, Ren, Jiajia, Zheng, Xufan, Rath, Thomas, Xiao, Cong, Hu, Tianyu, Trimmel, Gregor, Yang, Renqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 40
container_start_page
container_title Advanced functional materials
container_volume 33
creator Sun, Fengbo
Wang, Xunchang
Wan, Ming
Liu, Zhitian
Luo, Yixuan
Ren, Jiajia
Zheng, Xufan
Rath, Thomas
Xiao, Cong
Hu, Tianyu
Trimmel, Gregor
Yang, Renqiang
description Reducing the trap density within organic solar cells is of vital importance to realize high power conversion efficiency (PCE); however, research focusing on this aspect is limited in all‐polymer solar cells (All‐PSCs). In this work, it is found that the trap density can be dramatically reduced by simultaneously obtaining high miscibility of donor and acceptor and ordered packing in blend films through substituting ethylhexyl with hybrid cyclohexyl‐hexyl side chains in the design of the polymer donor. D18‐ChCl with hybrid cyclohexyl‐hexyl chains has a slightly lower aggregation behavior relative to the D18‐Cl counterpart, but reveals synchronously higher miscibility and crystallinity in a blend with the acceptor PYF‐T‐o. Such a morphology evolution positively affects the electronic properties of the device—prolongs the carrier lifetime, facilitates exciton dissociation, and lowers the energy disorder. As a result, the All‐PSC devices based on D18‐ChCl exhibited a remarkable PCE of 17.1%, with a low trap density of 2.65 × 1015 cm−3, a low energy disorder of 47 meV as well as outstanding stability and mechanical durability. This result demonstrates that hybrid cyclohexyl‐hexyl alkyl engineering delicately improves miscibility, drives low trap density, and refines device performance, which brings vibrancy to the All‐PSC research field. As an analog of D18‐Cl, the new polymer donor D18‐ChCl is designed by substituting the 2‐ethylhexyl side chains with cyclohexyl‐hexyl chain. Using PYF‐T‐o as the acceptor, the D18‐ChCl blend realizes an interpenetrating network constituting of smaller phase separation, and higher miscibility and crystallinity. Such a morphology evolution reduces energy disorder and trap density, which ultimately boosts the power conversion efficiency from 12.3% to 17.1%.
doi_str_mv 10.1002/adfm.202306791
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2871555030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2871555030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3171-fa5ac7d8f90db1c0707963a9e57a20dcc014618f96e09e281a2762e25d78b6fb3</originalsourceid><addsrcrecordid>eNqFkEFLwzAUx4soOKdXzwHPnS_pmrTH0Tk32FDcBt5KmqRbRtbMZEN7EPwIfkY_iS0TPXr6P3i__3vwC4JrDD0MQG65LLc9AiQCylJ8EnQwxTSMgCSnvzN-Pg8uvN8AYMaifid4H-vVGs20F7rQRu_rr4_PSSUPQkn0pJrca1shW6KF4zs0VJVvGKQrNDCmQR-tqbfKobk13KFMGePR0utqhcZ14bREWS2MXau3uqXHbaK5lgpla64rfxmcldx4dfWT3WA5ultk43D6cD_JBtNQRJjhsOQxF0wmZQqywAIYsJRGPFUx4wSkEID7FDdrqiBVJMGcMEoUiSVLCloWUTe4Od7dOftyUH6fb-zBVc3LnCQMx3EMETRU70gJZ713qsx3Tm-5q3MMeas4bxXnv4qbQnosvGqj6n_ofDAczf6632qWg6I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2871555030</pqid></control><display><type>article</type><title>High Miscibility‐Induced Reduction of Trap Density in All‐Polymer Solar Cells Using Hybrid Cyclohexyl‐Hexyl Side Chains</title><source>Wiley Online Library All Journals</source><creator>Sun, Fengbo ; Wang, Xunchang ; Wan, Ming ; Liu, Zhitian ; Luo, Yixuan ; Ren, Jiajia ; Zheng, Xufan ; Rath, Thomas ; Xiao, Cong ; Hu, Tianyu ; Trimmel, Gregor ; Yang, Renqiang</creator><creatorcontrib>Sun, Fengbo ; Wang, Xunchang ; Wan, Ming ; Liu, Zhitian ; Luo, Yixuan ; Ren, Jiajia ; Zheng, Xufan ; Rath, Thomas ; Xiao, Cong ; Hu, Tianyu ; Trimmel, Gregor ; Yang, Renqiang</creatorcontrib><description>Reducing the trap density within organic solar cells is of vital importance to realize high power conversion efficiency (PCE); however, research focusing on this aspect is limited in all‐polymer solar cells (All‐PSCs). In this work, it is found that the trap density can be dramatically reduced by simultaneously obtaining high miscibility of donor and acceptor and ordered packing in blend films through substituting ethylhexyl with hybrid cyclohexyl‐hexyl side chains in the design of the polymer donor. D18‐ChCl with hybrid cyclohexyl‐hexyl chains has a slightly lower aggregation behavior relative to the D18‐Cl counterpart, but reveals synchronously higher miscibility and crystallinity in a blend with the acceptor PYF‐T‐o. Such a morphology evolution positively affects the electronic properties of the device—prolongs the carrier lifetime, facilitates exciton dissociation, and lowers the energy disorder. As a result, the All‐PSC devices based on D18‐ChCl exhibited a remarkable PCE of 17.1%, with a low trap density of 2.65 × 1015 cm−3, a low energy disorder of 47 meV as well as outstanding stability and mechanical durability. This result demonstrates that hybrid cyclohexyl‐hexyl alkyl engineering delicately improves miscibility, drives low trap density, and refines device performance, which brings vibrancy to the All‐PSC research field. As an analog of D18‐Cl, the new polymer donor D18‐ChCl is designed by substituting the 2‐ethylhexyl side chains with cyclohexyl‐hexyl chain. Using PYF‐T‐o as the acceptor, the D18‐ChCl blend realizes an interpenetrating network constituting of smaller phase separation, and higher miscibility and crystallinity. Such a morphology evolution reduces energy disorder and trap density, which ultimately boosts the power conversion efficiency from 12.3% to 17.1%.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202306791</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>all‐polymer solar cells ; Carrier lifetime ; Density ; Energy conversion efficiency ; Energy of dissociation ; Excitons ; Materials science ; Miscibility ; Photovoltaic cells ; Polymers ; power conversion efficiency ; Service life assessment ; Solar cells ; trap density</subject><ispartof>Advanced functional materials, 2023-10, Vol.33 (40), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3171-fa5ac7d8f90db1c0707963a9e57a20dcc014618f96e09e281a2762e25d78b6fb3</citedby><cites>FETCH-LOGICAL-c3171-fa5ac7d8f90db1c0707963a9e57a20dcc014618f96e09e281a2762e25d78b6fb3</cites><orcidid>0000-0001-6794-7416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202306791$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202306791$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Sun, Fengbo</creatorcontrib><creatorcontrib>Wang, Xunchang</creatorcontrib><creatorcontrib>Wan, Ming</creatorcontrib><creatorcontrib>Liu, Zhitian</creatorcontrib><creatorcontrib>Luo, Yixuan</creatorcontrib><creatorcontrib>Ren, Jiajia</creatorcontrib><creatorcontrib>Zheng, Xufan</creatorcontrib><creatorcontrib>Rath, Thomas</creatorcontrib><creatorcontrib>Xiao, Cong</creatorcontrib><creatorcontrib>Hu, Tianyu</creatorcontrib><creatorcontrib>Trimmel, Gregor</creatorcontrib><creatorcontrib>Yang, Renqiang</creatorcontrib><title>High Miscibility‐Induced Reduction of Trap Density in All‐Polymer Solar Cells Using Hybrid Cyclohexyl‐Hexyl Side Chains</title><title>Advanced functional materials</title><description>Reducing the trap density within organic solar cells is of vital importance to realize high power conversion efficiency (PCE); however, research focusing on this aspect is limited in all‐polymer solar cells (All‐PSCs). In this work, it is found that the trap density can be dramatically reduced by simultaneously obtaining high miscibility of donor and acceptor and ordered packing in blend films through substituting ethylhexyl with hybrid cyclohexyl‐hexyl side chains in the design of the polymer donor. D18‐ChCl with hybrid cyclohexyl‐hexyl chains has a slightly lower aggregation behavior relative to the D18‐Cl counterpart, but reveals synchronously higher miscibility and crystallinity in a blend with the acceptor PYF‐T‐o. Such a morphology evolution positively affects the electronic properties of the device—prolongs the carrier lifetime, facilitates exciton dissociation, and lowers the energy disorder. As a result, the All‐PSC devices based on D18‐ChCl exhibited a remarkable PCE of 17.1%, with a low trap density of 2.65 × 1015 cm−3, a low energy disorder of 47 meV as well as outstanding stability and mechanical durability. This result demonstrates that hybrid cyclohexyl‐hexyl alkyl engineering delicately improves miscibility, drives low trap density, and refines device performance, which brings vibrancy to the All‐PSC research field. As an analog of D18‐Cl, the new polymer donor D18‐ChCl is designed by substituting the 2‐ethylhexyl side chains with cyclohexyl‐hexyl chain. Using PYF‐T‐o as the acceptor, the D18‐ChCl blend realizes an interpenetrating network constituting of smaller phase separation, and higher miscibility and crystallinity. Such a morphology evolution reduces energy disorder and trap density, which ultimately boosts the power conversion efficiency from 12.3% to 17.1%.</description><subject>all‐polymer solar cells</subject><subject>Carrier lifetime</subject><subject>Density</subject><subject>Energy conversion efficiency</subject><subject>Energy of dissociation</subject><subject>Excitons</subject><subject>Materials science</subject><subject>Miscibility</subject><subject>Photovoltaic cells</subject><subject>Polymers</subject><subject>power conversion efficiency</subject><subject>Service life assessment</subject><subject>Solar cells</subject><subject>trap density</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLwzAUx4soOKdXzwHPnS_pmrTH0Tk32FDcBt5KmqRbRtbMZEN7EPwIfkY_iS0TPXr6P3i__3vwC4JrDD0MQG65LLc9AiQCylJ8EnQwxTSMgCSnvzN-Pg8uvN8AYMaifid4H-vVGs20F7rQRu_rr4_PSSUPQkn0pJrca1shW6KF4zs0VJVvGKQrNDCmQR-tqbfKobk13KFMGePR0utqhcZ14bREWS2MXau3uqXHbaK5lgpla64rfxmcldx4dfWT3WA5ultk43D6cD_JBtNQRJjhsOQxF0wmZQqywAIYsJRGPFUx4wSkEID7FDdrqiBVJMGcMEoUiSVLCloWUTe4Od7dOftyUH6fb-zBVc3LnCQMx3EMETRU70gJZ713qsx3Tm-5q3MMeas4bxXnv4qbQnosvGqj6n_ofDAczf6632qWg6I</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Sun, Fengbo</creator><creator>Wang, Xunchang</creator><creator>Wan, Ming</creator><creator>Liu, Zhitian</creator><creator>Luo, Yixuan</creator><creator>Ren, Jiajia</creator><creator>Zheng, Xufan</creator><creator>Rath, Thomas</creator><creator>Xiao, Cong</creator><creator>Hu, Tianyu</creator><creator>Trimmel, Gregor</creator><creator>Yang, Renqiang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6794-7416</orcidid></search><sort><creationdate>20231001</creationdate><title>High Miscibility‐Induced Reduction of Trap Density in All‐Polymer Solar Cells Using Hybrid Cyclohexyl‐Hexyl Side Chains</title><author>Sun, Fengbo ; Wang, Xunchang ; Wan, Ming ; Liu, Zhitian ; Luo, Yixuan ; Ren, Jiajia ; Zheng, Xufan ; Rath, Thomas ; Xiao, Cong ; Hu, Tianyu ; Trimmel, Gregor ; Yang, Renqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3171-fa5ac7d8f90db1c0707963a9e57a20dcc014618f96e09e281a2762e25d78b6fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>all‐polymer solar cells</topic><topic>Carrier lifetime</topic><topic>Density</topic><topic>Energy conversion efficiency</topic><topic>Energy of dissociation</topic><topic>Excitons</topic><topic>Materials science</topic><topic>Miscibility</topic><topic>Photovoltaic cells</topic><topic>Polymers</topic><topic>power conversion efficiency</topic><topic>Service life assessment</topic><topic>Solar cells</topic><topic>trap density</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Fengbo</creatorcontrib><creatorcontrib>Wang, Xunchang</creatorcontrib><creatorcontrib>Wan, Ming</creatorcontrib><creatorcontrib>Liu, Zhitian</creatorcontrib><creatorcontrib>Luo, Yixuan</creatorcontrib><creatorcontrib>Ren, Jiajia</creatorcontrib><creatorcontrib>Zheng, Xufan</creatorcontrib><creatorcontrib>Rath, Thomas</creatorcontrib><creatorcontrib>Xiao, Cong</creatorcontrib><creatorcontrib>Hu, Tianyu</creatorcontrib><creatorcontrib>Trimmel, Gregor</creatorcontrib><creatorcontrib>Yang, Renqiang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Fengbo</au><au>Wang, Xunchang</au><au>Wan, Ming</au><au>Liu, Zhitian</au><au>Luo, Yixuan</au><au>Ren, Jiajia</au><au>Zheng, Xufan</au><au>Rath, Thomas</au><au>Xiao, Cong</au><au>Hu, Tianyu</au><au>Trimmel, Gregor</au><au>Yang, Renqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Miscibility‐Induced Reduction of Trap Density in All‐Polymer Solar Cells Using Hybrid Cyclohexyl‐Hexyl Side Chains</atitle><jtitle>Advanced functional materials</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>33</volume><issue>40</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Reducing the trap density within organic solar cells is of vital importance to realize high power conversion efficiency (PCE); however, research focusing on this aspect is limited in all‐polymer solar cells (All‐PSCs). In this work, it is found that the trap density can be dramatically reduced by simultaneously obtaining high miscibility of donor and acceptor and ordered packing in blend films through substituting ethylhexyl with hybrid cyclohexyl‐hexyl side chains in the design of the polymer donor. D18‐ChCl with hybrid cyclohexyl‐hexyl chains has a slightly lower aggregation behavior relative to the D18‐Cl counterpart, but reveals synchronously higher miscibility and crystallinity in a blend with the acceptor PYF‐T‐o. Such a morphology evolution positively affects the electronic properties of the device—prolongs the carrier lifetime, facilitates exciton dissociation, and lowers the energy disorder. As a result, the All‐PSC devices based on D18‐ChCl exhibited a remarkable PCE of 17.1%, with a low trap density of 2.65 × 1015 cm−3, a low energy disorder of 47 meV as well as outstanding stability and mechanical durability. This result demonstrates that hybrid cyclohexyl‐hexyl alkyl engineering delicately improves miscibility, drives low trap density, and refines device performance, which brings vibrancy to the All‐PSC research field. As an analog of D18‐Cl, the new polymer donor D18‐ChCl is designed by substituting the 2‐ethylhexyl side chains with cyclohexyl‐hexyl chain. Using PYF‐T‐o as the acceptor, the D18‐ChCl blend realizes an interpenetrating network constituting of smaller phase separation, and higher miscibility and crystallinity. Such a morphology evolution reduces energy disorder and trap density, which ultimately boosts the power conversion efficiency from 12.3% to 17.1%.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202306791</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6794-7416</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-10, Vol.33 (40), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2871555030
source Wiley Online Library All Journals
subjects all‐polymer solar cells
Carrier lifetime
Density
Energy conversion efficiency
Energy of dissociation
Excitons
Materials science
Miscibility
Photovoltaic cells
Polymers
power conversion efficiency
Service life assessment
Solar cells
trap density
title High Miscibility‐Induced Reduction of Trap Density in All‐Polymer Solar Cells Using Hybrid Cyclohexyl‐Hexyl Side Chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A04%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Miscibility%E2%80%90Induced%20Reduction%20of%20Trap%20Density%20in%20All%E2%80%90Polymer%20Solar%20Cells%20Using%20Hybrid%20Cyclohexyl%E2%80%90Hexyl%20Side%20Chains&rft.jtitle=Advanced%20functional%20materials&rft.au=Sun,%20Fengbo&rft.date=2023-10-01&rft.volume=33&rft.issue=40&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202306791&rft_dat=%3Cproquest_cross%3E2871555030%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2871555030&rft_id=info:pmid/&rfr_iscdi=true