Thermal error modeling and compensation of spindle based on gate recurrent unit network

In view of the serious hysteresis and nonlinear relationship between the thermal error of CNC machine tool spindle and the temperature rise of spindle measuring points, a spindle thermal error prediction model combining sparrow search algorithm (SSA) and gate recurrent unit (GRU) is proposed. Taking...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2023-10, Vol.128 (11-12), p.5519-5528
Hauptverfasser: Li, Yang, Bai, Yinming, Hou, Zhaoyang, Nie, Zhe, Zhang, Huijie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5528
container_issue 11-12
container_start_page 5519
container_title International journal of advanced manufacturing technology
container_volume 128
creator Li, Yang
Bai, Yinming
Hou, Zhaoyang
Nie, Zhe
Zhang, Huijie
description In view of the serious hysteresis and nonlinear relationship between the thermal error of CNC machine tool spindle and the temperature rise of spindle measuring points, a spindle thermal error prediction model combining sparrow search algorithm (SSA) and gate recurrent unit (GRU) is proposed. Taking the spindle of a precision machine tool as the research object, the thermal error and the temperature field of the spindle in idling state are measured. Select the temperature of the measuring point of the spindle as the input and the thermal error in Z-direction as the output, the thermal error prediction model is established by using GRU network. SSA is used to optimize the training parameters of GRU network, and finally a prediction model of SSA-GRU spindle Z-direction thermal error considering the influence of natural environment is established. The performance of the established model is verified by taking the test data of variable speed working condition as the robustness test set. The results show that SSA-GRU can be used for thermal error modeling and compensation, and the Z-direction thermal error of the machine tool spindle can be controlled within 8 μm, which has better prediction accuracy than the traditional network model.
doi_str_mv 10.1007/s00170-023-12276-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2870824222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870824222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b8f48ab53a3f6fee1b1fa0dfc0b2acd1f3730a4bdc25f22aa1decfdc8c949d983</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19E8Om26lMEXDLgZcRnS5Gbs2CY1SRH_vR0ruHN14fCdc-FD6JLRa0ZpdZMoZRUllAvCOK9Kwo_QghVCEEHZ6hgtKC8lEVUpT9FZSvsJL1kpF-h1-wax1x2GGEPEfbDQtX6HtbfYhH4An3Rug8fB4TS03naAG53A4inb6Qw4ghljBJ_x6NuMPeTPEN_P0YnTXYKL37tEL_d32_Uj2Tw_PK1vN8QIVmfSSFdI3ayEFq50AKxhTlPrDG24NpY5UQmqi8YavnKca80sGGeNNHVR21qKJbqad4cYPkZIWe3DGP30UnFZUckLzvlE8ZkyMaQUwakhtr2OX4pRdRCoZoFqEqh-BKpDScylNMF-B_Fv-p_WN3ukdbY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870824222</pqid></control><display><type>article</type><title>Thermal error modeling and compensation of spindle based on gate recurrent unit network</title><source>Springer LINK 全文期刊数据库</source><creator>Li, Yang ; Bai, Yinming ; Hou, Zhaoyang ; Nie, Zhe ; Zhang, Huijie</creator><creatorcontrib>Li, Yang ; Bai, Yinming ; Hou, Zhaoyang ; Nie, Zhe ; Zhang, Huijie</creatorcontrib><description>In view of the serious hysteresis and nonlinear relationship between the thermal error of CNC machine tool spindle and the temperature rise of spindle measuring points, a spindle thermal error prediction model combining sparrow search algorithm (SSA) and gate recurrent unit (GRU) is proposed. Taking the spindle of a precision machine tool as the research object, the thermal error and the temperature field of the spindle in idling state are measured. Select the temperature of the measuring point of the spindle as the input and the thermal error in Z-direction as the output, the thermal error prediction model is established by using GRU network. SSA is used to optimize the training parameters of GRU network, and finally a prediction model of SSA-GRU spindle Z-direction thermal error considering the influence of natural environment is established. The performance of the established model is verified by taking the test data of variable speed working condition as the robustness test set. The results show that SSA-GRU can be used for thermal error modeling and compensation, and the Z-direction thermal error of the machine tool spindle can be controlled within 8 μm, which has better prediction accuracy than the traditional network model.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-023-12276-2</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Accuracy ; Advanced manufacturing technologies ; CAE) and Design ; Compensation ; Computer-Aided Engineering (CAD ; Cooling ; Deformation ; Engineering ; Error analysis ; Genetic algorithms ; Heat ; Industrial and Production Engineering ; Machine tools ; Manufacturing ; Mechanical Engineering ; Media Management ; Modelling ; Neural networks ; Original Article ; Prediction models ; Search algorithms ; Spindles ; Temperature distribution ; Time series</subject><ispartof>International journal of advanced manufacturing technology, 2023-10, Vol.128 (11-12), p.5519-5528</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b8f48ab53a3f6fee1b1fa0dfc0b2acd1f3730a4bdc25f22aa1decfdc8c949d983</citedby><cites>FETCH-LOGICAL-c319t-b8f48ab53a3f6fee1b1fa0dfc0b2acd1f3730a4bdc25f22aa1decfdc8c949d983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-023-12276-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-023-12276-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Bai, Yinming</creatorcontrib><creatorcontrib>Hou, Zhaoyang</creatorcontrib><creatorcontrib>Nie, Zhe</creatorcontrib><creatorcontrib>Zhang, Huijie</creatorcontrib><title>Thermal error modeling and compensation of spindle based on gate recurrent unit network</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>In view of the serious hysteresis and nonlinear relationship between the thermal error of CNC machine tool spindle and the temperature rise of spindle measuring points, a spindle thermal error prediction model combining sparrow search algorithm (SSA) and gate recurrent unit (GRU) is proposed. Taking the spindle of a precision machine tool as the research object, the thermal error and the temperature field of the spindle in idling state are measured. Select the temperature of the measuring point of the spindle as the input and the thermal error in Z-direction as the output, the thermal error prediction model is established by using GRU network. SSA is used to optimize the training parameters of GRU network, and finally a prediction model of SSA-GRU spindle Z-direction thermal error considering the influence of natural environment is established. The performance of the established model is verified by taking the test data of variable speed working condition as the robustness test set. The results show that SSA-GRU can be used for thermal error modeling and compensation, and the Z-direction thermal error of the machine tool spindle can be controlled within 8 μm, which has better prediction accuracy than the traditional network model.</description><subject>Accuracy</subject><subject>Advanced manufacturing technologies</subject><subject>CAE) and Design</subject><subject>Compensation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cooling</subject><subject>Deformation</subject><subject>Engineering</subject><subject>Error analysis</subject><subject>Genetic algorithms</subject><subject>Heat</subject><subject>Industrial and Production Engineering</subject><subject>Machine tools</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Prediction models</subject><subject>Search algorithms</subject><subject>Spindles</subject><subject>Temperature distribution</subject><subject>Time series</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19E8Om26lMEXDLgZcRnS5Gbs2CY1SRH_vR0ruHN14fCdc-FD6JLRa0ZpdZMoZRUllAvCOK9Kwo_QghVCEEHZ6hgtKC8lEVUpT9FZSvsJL1kpF-h1-wax1x2GGEPEfbDQtX6HtbfYhH4An3Rug8fB4TS03naAG53A4inb6Qw4ghljBJ_x6NuMPeTPEN_P0YnTXYKL37tEL_d32_Uj2Tw_PK1vN8QIVmfSSFdI3ayEFq50AKxhTlPrDG24NpY5UQmqi8YavnKca80sGGeNNHVR21qKJbqad4cYPkZIWe3DGP30UnFZUckLzvlE8ZkyMaQUwakhtr2OX4pRdRCoZoFqEqh-BKpDScylNMF-B_Fv-p_WN3ukdbY</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Li, Yang</creator><creator>Bai, Yinming</creator><creator>Hou, Zhaoyang</creator><creator>Nie, Zhe</creator><creator>Zhang, Huijie</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20231001</creationdate><title>Thermal error modeling and compensation of spindle based on gate recurrent unit network</title><author>Li, Yang ; Bai, Yinming ; Hou, Zhaoyang ; Nie, Zhe ; Zhang, Huijie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b8f48ab53a3f6fee1b1fa0dfc0b2acd1f3730a4bdc25f22aa1decfdc8c949d983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Advanced manufacturing technologies</topic><topic>CAE) and Design</topic><topic>Compensation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cooling</topic><topic>Deformation</topic><topic>Engineering</topic><topic>Error analysis</topic><topic>Genetic algorithms</topic><topic>Heat</topic><topic>Industrial and Production Engineering</topic><topic>Machine tools</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Prediction models</topic><topic>Search algorithms</topic><topic>Spindles</topic><topic>Temperature distribution</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Bai, Yinming</creatorcontrib><creatorcontrib>Hou, Zhaoyang</creatorcontrib><creatorcontrib>Nie, Zhe</creatorcontrib><creatorcontrib>Zhang, Huijie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yang</au><au>Bai, Yinming</au><au>Hou, Zhaoyang</au><au>Nie, Zhe</au><au>Zhang, Huijie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal error modeling and compensation of spindle based on gate recurrent unit network</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>128</volume><issue>11-12</issue><spage>5519</spage><epage>5528</epage><pages>5519-5528</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>In view of the serious hysteresis and nonlinear relationship between the thermal error of CNC machine tool spindle and the temperature rise of spindle measuring points, a spindle thermal error prediction model combining sparrow search algorithm (SSA) and gate recurrent unit (GRU) is proposed. Taking the spindle of a precision machine tool as the research object, the thermal error and the temperature field of the spindle in idling state are measured. Select the temperature of the measuring point of the spindle as the input and the thermal error in Z-direction as the output, the thermal error prediction model is established by using GRU network. SSA is used to optimize the training parameters of GRU network, and finally a prediction model of SSA-GRU spindle Z-direction thermal error considering the influence of natural environment is established. The performance of the established model is verified by taking the test data of variable speed working condition as the robustness test set. The results show that SSA-GRU can be used for thermal error modeling and compensation, and the Z-direction thermal error of the machine tool spindle can be controlled within 8 μm, which has better prediction accuracy than the traditional network model.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-023-12276-2</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2023-10, Vol.128 (11-12), p.5519-5528
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2870824222
source Springer LINK 全文期刊数据库
subjects Accuracy
Advanced manufacturing technologies
CAE) and Design
Compensation
Computer-Aided Engineering (CAD
Cooling
Deformation
Engineering
Error analysis
Genetic algorithms
Heat
Industrial and Production Engineering
Machine tools
Manufacturing
Mechanical Engineering
Media Management
Modelling
Neural networks
Original Article
Prediction models
Search algorithms
Spindles
Temperature distribution
Time series
title Thermal error modeling and compensation of spindle based on gate recurrent unit network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20error%20modeling%20and%20compensation%20of%20spindle%20based%20on%20gate%20recurrent%20unit%20network&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Li,%20Yang&rft.date=2023-10-01&rft.volume=128&rft.issue=11-12&rft.spage=5519&rft.epage=5528&rft.pages=5519-5528&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-023-12276-2&rft_dat=%3Cproquest_cross%3E2870824222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870824222&rft_id=info:pmid/&rfr_iscdi=true