Metabentonite and metakaolin-based geopolymers/zeolites: relation between kind of clay, calcination temperature and concentration of alkaline activator

In this paper, the composition and properties of two different activated calcinated clays were investigated under selected curing conditions. The tendency of metabentonite and metakaoline to form geopolymers and zeolites was investigated by FTIR spectroscopy, TGA and DSC techniques, PXRD, HT-PXRD, S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2023-10, Vol.148 (20), p.10531-10547
Hauptverfasser: Slaný, Michal, Kuzielová, Eva, Žemlička, Matúš, Matejdes, Marián, Struhárová, Alena, Palou, Martin T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the composition and properties of two different activated calcinated clays were investigated under selected curing conditions. The tendency of metabentonite and metakaoline to form geopolymers and zeolites was investigated by FTIR spectroscopy, TGA and DSC techniques, PXRD, HT-PXRD, SEM, and BET-N 2 adsorption analyses. The selection of the optimal sample compositions was done on a basis of preliminary results obtained from bentonite and kaolin clays activated at calcination temperatures (700, 750, 800 °C) with a holding time of 3 h in a combination with different NaOH concentrations (5, 10, 20 mass%). In a more detailed examination, the samples calcined at a temperature of 800 °C with different NaOH concentrations were studied. For metakaolin-based samples, dominant geopolymer formation was achieved using 5 mass% NaOH. The zeolite amount increased concomitantly with the concentration of the alkali activator, whereas zeolite A and zeolite P were determined as the predominant phases. For metabentonite-based samples, 10 mass% NaOH concentration was found to be optimal by the means of geopolymer formation. At higher alkaline activator concentrations, the presence of zeolitic phases faujasite and gobbinsite was confirmed. However, the determined degree of crystallinity was significantly lower than in the corresponding activated metakaolin samples. With a gradual increase in NaOH concentration, the specific surface area of the metabentonite-based samples increased reaching a value of 218.95 m 2  g −1 promising for adsorption applications. The opposite effect was observed for the metakaolin-based samples, and this result is caused by the increased formation of zeolite phases and corresponding changes in their channel dimensions.
ISSN:1388-6150
1588-2926
DOI:10.1007/s10973-023-12267-1