Dimensionality selection for hyperbolic embeddings using decomposed normalized maximum likelihood code-length

Graph embedding methods are effective techniques for representing nodes and their relations in a continuous space. Specifically, the hyperbolic space is more effective than the Euclidean space for embedding graphs with tree-like structures. Thus, it is critical how to select the best dimensionality...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge and information systems 2023-12, Vol.65 (12), p.5601-5634
Hauptverfasser: Yuki, Ryo, Ike, Yuichi, Yamanishi, Kenji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5634
container_issue 12
container_start_page 5601
container_title Knowledge and information systems
container_volume 65
creator Yuki, Ryo
Ike, Yuichi
Yamanishi, Kenji
description Graph embedding methods are effective techniques for representing nodes and their relations in a continuous space. Specifically, the hyperbolic space is more effective than the Euclidean space for embedding graphs with tree-like structures. Thus, it is critical how to select the best dimensionality for the hyperbolic space in which a graph is embedded. This is because we cannot distinguish nodes well with dimensionality that is considerably low, whereas the embedded relations are affected by irregularities in data with excessively high dimensionality. We consider this problem from the viewpoint of statistical model selection for latent variable models. Thereafter, we propose a novel methodology for dimensionality selection based on the minimum description length principle. We aim to introduce a latent variable modeling of hyperbolic embeddings and apply the decomposed normalized maximum likelihood code-length to latent variable model selection. We empirically demonstrated the effectiveness of our method using both synthetic and real-world datasets.
doi_str_mv 10.1007/s10115-023-01934-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2870566162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870566162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-746b1aacd9bdcb224b737a78613b094457a5a0a67b8a04787b686c09ccf562c73</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIsouK5-AU8Bz9G8pE3ao6x_QfCi55Ck6W7WpqlJC66f3q5d8OZp5sH8Bt5k2SWQayBE3CQgAAUmlGECFcsxPcoWhEKFGQA_PnhgQpxmZyltCQHBARaZv3PedsmFTrVu2KFkW2uG6URNiGiz623UoXUGWa9tXbtundCYJkG1NcH3IdkadSH6Cf-erFdfzo8ete7Dtm4TQo1MqC1ubbceNufZSaPaZC8OuszeH-7fVk_45fXxeXX7gg2DfMAi5xqUMnWla6MpzbVgQomSA9OkyvNCqEIRxYUuFclFKTQvuSGVMU3BqRFsmV3NvX0Mn6NNg9yGMU4vJklLQQrOgdMpReeUiSGlaBvZR-dV3Ekgcj-rnGeV06zyd1a5h9gMpSncrW38q_6H-gGj_nzm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870566162</pqid></control><display><type>article</type><title>Dimensionality selection for hyperbolic embeddings using decomposed normalized maximum likelihood code-length</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yuki, Ryo ; Ike, Yuichi ; Yamanishi, Kenji</creator><creatorcontrib>Yuki, Ryo ; Ike, Yuichi ; Yamanishi, Kenji</creatorcontrib><description>Graph embedding methods are effective techniques for representing nodes and their relations in a continuous space. Specifically, the hyperbolic space is more effective than the Euclidean space for embedding graphs with tree-like structures. Thus, it is critical how to select the best dimensionality for the hyperbolic space in which a graph is embedded. This is because we cannot distinguish nodes well with dimensionality that is considerably low, whereas the embedded relations are affected by irregularities in data with excessively high dimensionality. We consider this problem from the viewpoint of statistical model selection for latent variable models. Thereafter, we propose a novel methodology for dimensionality selection based on the minimum description length principle. We aim to introduce a latent variable modeling of hyperbolic embeddings and apply the decomposed normalized maximum likelihood code-length to latent variable model selection. We empirically demonstrated the effectiveness of our method using both synthetic and real-world datasets.</description><identifier>ISSN: 0219-1377</identifier><identifier>EISSN: 0219-3116</identifier><identifier>DOI: 10.1007/s10115-023-01934-2</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Computer Science ; Data Mining and Knowledge Discovery ; Database Management ; Decomposition ; Embedding ; Euclidean geometry ; Graphical representations ; Hyperbolic coordinates ; Information Storage and Retrieval ; Information Systems and Communication Service ; Information Systems Applications (incl.Internet) ; IT in Business ; Maximum likelihood method ; Nodes ; Regular Paper ; Statistical models</subject><ispartof>Knowledge and information systems, 2023-12, Vol.65 (12), p.5601-5634</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-746b1aacd9bdcb224b737a78613b094457a5a0a67b8a04787b686c09ccf562c73</cites><orcidid>0000-0002-1032-950X ; 0000-0001-7370-9991 ; 0000-0002-8907-8319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10115-023-01934-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10115-023-01934-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Yuki, Ryo</creatorcontrib><creatorcontrib>Ike, Yuichi</creatorcontrib><creatorcontrib>Yamanishi, Kenji</creatorcontrib><title>Dimensionality selection for hyperbolic embeddings using decomposed normalized maximum likelihood code-length</title><title>Knowledge and information systems</title><addtitle>Knowl Inf Syst</addtitle><description>Graph embedding methods are effective techniques for representing nodes and their relations in a continuous space. Specifically, the hyperbolic space is more effective than the Euclidean space for embedding graphs with tree-like structures. Thus, it is critical how to select the best dimensionality for the hyperbolic space in which a graph is embedded. This is because we cannot distinguish nodes well with dimensionality that is considerably low, whereas the embedded relations are affected by irregularities in data with excessively high dimensionality. We consider this problem from the viewpoint of statistical model selection for latent variable models. Thereafter, we propose a novel methodology for dimensionality selection based on the minimum description length principle. We aim to introduce a latent variable modeling of hyperbolic embeddings and apply the decomposed normalized maximum likelihood code-length to latent variable model selection. We empirically demonstrated the effectiveness of our method using both synthetic and real-world datasets.</description><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Decomposition</subject><subject>Embedding</subject><subject>Euclidean geometry</subject><subject>Graphical representations</subject><subject>Hyperbolic coordinates</subject><subject>Information Storage and Retrieval</subject><subject>Information Systems and Communication Service</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>IT in Business</subject><subject>Maximum likelihood method</subject><subject>Nodes</subject><subject>Regular Paper</subject><subject>Statistical models</subject><issn>0219-1377</issn><issn>0219-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LxDAUxIsouK5-AU8Bz9G8pE3ao6x_QfCi55Ck6W7WpqlJC66f3q5d8OZp5sH8Bt5k2SWQayBE3CQgAAUmlGECFcsxPcoWhEKFGQA_PnhgQpxmZyltCQHBARaZv3PedsmFTrVu2KFkW2uG6URNiGiz623UoXUGWa9tXbtundCYJkG1NcH3IdkadSH6Cf-erFdfzo8ete7Dtm4TQo1MqC1ubbceNufZSaPaZC8OuszeH-7fVk_45fXxeXX7gg2DfMAi5xqUMnWla6MpzbVgQomSA9OkyvNCqEIRxYUuFclFKTQvuSGVMU3BqRFsmV3NvX0Mn6NNg9yGMU4vJklLQQrOgdMpReeUiSGlaBvZR-dV3Ekgcj-rnGeV06zyd1a5h9gMpSncrW38q_6H-gGj_nzm</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Yuki, Ryo</creator><creator>Ike, Yuichi</creator><creator>Yamanishi, Kenji</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1032-950X</orcidid><orcidid>https://orcid.org/0000-0001-7370-9991</orcidid><orcidid>https://orcid.org/0000-0002-8907-8319</orcidid></search><sort><creationdate>20231201</creationdate><title>Dimensionality selection for hyperbolic embeddings using decomposed normalized maximum likelihood code-length</title><author>Yuki, Ryo ; Ike, Yuichi ; Yamanishi, Kenji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-746b1aacd9bdcb224b737a78613b094457a5a0a67b8a04787b686c09ccf562c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Decomposition</topic><topic>Embedding</topic><topic>Euclidean geometry</topic><topic>Graphical representations</topic><topic>Hyperbolic coordinates</topic><topic>Information Storage and Retrieval</topic><topic>Information Systems and Communication Service</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>IT in Business</topic><topic>Maximum likelihood method</topic><topic>Nodes</topic><topic>Regular Paper</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuki, Ryo</creatorcontrib><creatorcontrib>Ike, Yuichi</creatorcontrib><creatorcontrib>Yamanishi, Kenji</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Knowledge and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuki, Ryo</au><au>Ike, Yuichi</au><au>Yamanishi, Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimensionality selection for hyperbolic embeddings using decomposed normalized maximum likelihood code-length</atitle><jtitle>Knowledge and information systems</jtitle><stitle>Knowl Inf Syst</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>65</volume><issue>12</issue><spage>5601</spage><epage>5634</epage><pages>5601-5634</pages><issn>0219-1377</issn><eissn>0219-3116</eissn><abstract>Graph embedding methods are effective techniques for representing nodes and their relations in a continuous space. Specifically, the hyperbolic space is more effective than the Euclidean space for embedding graphs with tree-like structures. Thus, it is critical how to select the best dimensionality for the hyperbolic space in which a graph is embedded. This is because we cannot distinguish nodes well with dimensionality that is considerably low, whereas the embedded relations are affected by irregularities in data with excessively high dimensionality. We consider this problem from the viewpoint of statistical model selection for latent variable models. Thereafter, we propose a novel methodology for dimensionality selection based on the minimum description length principle. We aim to introduce a latent variable modeling of hyperbolic embeddings and apply the decomposed normalized maximum likelihood code-length to latent variable model selection. We empirically demonstrated the effectiveness of our method using both synthetic and real-world datasets.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10115-023-01934-2</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-1032-950X</orcidid><orcidid>https://orcid.org/0000-0001-7370-9991</orcidid><orcidid>https://orcid.org/0000-0002-8907-8319</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0219-1377
ispartof Knowledge and information systems, 2023-12, Vol.65 (12), p.5601-5634
issn 0219-1377
0219-3116
language eng
recordid cdi_proquest_journals_2870566162
source SpringerLink Journals - AutoHoldings
subjects Computer Science
Data Mining and Knowledge Discovery
Database Management
Decomposition
Embedding
Euclidean geometry
Graphical representations
Hyperbolic coordinates
Information Storage and Retrieval
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
IT in Business
Maximum likelihood method
Nodes
Regular Paper
Statistical models
title Dimensionality selection for hyperbolic embeddings using decomposed normalized maximum likelihood code-length
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimensionality%20selection%20for%20hyperbolic%20embeddings%20using%20decomposed%20normalized%20maximum%20likelihood%20code-length&rft.jtitle=Knowledge%20and%20information%20systems&rft.au=Yuki,%20Ryo&rft.date=2023-12-01&rft.volume=65&rft.issue=12&rft.spage=5601&rft.epage=5634&rft.pages=5601-5634&rft.issn=0219-1377&rft.eissn=0219-3116&rft_id=info:doi/10.1007/s10115-023-01934-2&rft_dat=%3Cproquest_cross%3E2870566162%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870566162&rft_id=info:pmid/&rfr_iscdi=true