Dimensionality selection for hyperbolic embeddings using decomposed normalized maximum likelihood code-length
Graph embedding methods are effective techniques for representing nodes and their relations in a continuous space. Specifically, the hyperbolic space is more effective than the Euclidean space for embedding graphs with tree-like structures. Thus, it is critical how to select the best dimensionality...
Gespeichert in:
Veröffentlicht in: | Knowledge and information systems 2023-12, Vol.65 (12), p.5601-5634 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5634 |
---|---|
container_issue | 12 |
container_start_page | 5601 |
container_title | Knowledge and information systems |
container_volume | 65 |
creator | Yuki, Ryo Ike, Yuichi Yamanishi, Kenji |
description | Graph embedding methods are effective techniques for representing nodes and their relations in a continuous space. Specifically, the hyperbolic space is more effective than the Euclidean space for embedding graphs with tree-like structures. Thus, it is critical how to select the best dimensionality for the hyperbolic space in which a graph is embedded. This is because we cannot distinguish nodes well with dimensionality that is considerably low, whereas the embedded relations are affected by irregularities in data with excessively high dimensionality. We consider this problem from the viewpoint of statistical model selection for latent variable models. Thereafter, we propose a novel methodology for dimensionality selection based on the minimum description length principle. We aim to introduce a latent variable modeling of hyperbolic embeddings and apply the decomposed normalized maximum likelihood code-length to latent variable model selection. We empirically demonstrated the effectiveness of our method using both synthetic and real-world datasets. |
doi_str_mv | 10.1007/s10115-023-01934-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2870566162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870566162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-746b1aacd9bdcb224b737a78613b094457a5a0a67b8a04787b686c09ccf562c73</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIsouK5-AU8Bz9G8pE3ao6x_QfCi55Ck6W7WpqlJC66f3q5d8OZp5sH8Bt5k2SWQayBE3CQgAAUmlGECFcsxPcoWhEKFGQA_PnhgQpxmZyltCQHBARaZv3PedsmFTrVu2KFkW2uG6URNiGiz623UoXUGWa9tXbtundCYJkG1NcH3IdkadSH6Cf-erFdfzo8ete7Dtm4TQo1MqC1ubbceNufZSaPaZC8OuszeH-7fVk_45fXxeXX7gg2DfMAi5xqUMnWla6MpzbVgQomSA9OkyvNCqEIRxYUuFclFKTQvuSGVMU3BqRFsmV3NvX0Mn6NNg9yGMU4vJklLQQrOgdMpReeUiSGlaBvZR-dV3Ekgcj-rnGeV06zyd1a5h9gMpSncrW38q_6H-gGj_nzm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870566162</pqid></control><display><type>article</type><title>Dimensionality selection for hyperbolic embeddings using decomposed normalized maximum likelihood code-length</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yuki, Ryo ; Ike, Yuichi ; Yamanishi, Kenji</creator><creatorcontrib>Yuki, Ryo ; Ike, Yuichi ; Yamanishi, Kenji</creatorcontrib><description>Graph embedding methods are effective techniques for representing nodes and their relations in a continuous space. Specifically, the hyperbolic space is more effective than the Euclidean space for embedding graphs with tree-like structures. Thus, it is critical how to select the best dimensionality for the hyperbolic space in which a graph is embedded. This is because we cannot distinguish nodes well with dimensionality that is considerably low, whereas the embedded relations are affected by irregularities in data with excessively high dimensionality. We consider this problem from the viewpoint of statistical model selection for latent variable models. Thereafter, we propose a novel methodology for dimensionality selection based on the minimum description length principle. We aim to introduce a latent variable modeling of hyperbolic embeddings and apply the decomposed normalized maximum likelihood code-length to latent variable model selection. We empirically demonstrated the effectiveness of our method using both synthetic and real-world datasets.</description><identifier>ISSN: 0219-1377</identifier><identifier>EISSN: 0219-3116</identifier><identifier>DOI: 10.1007/s10115-023-01934-2</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Computer Science ; Data Mining and Knowledge Discovery ; Database Management ; Decomposition ; Embedding ; Euclidean geometry ; Graphical representations ; Hyperbolic coordinates ; Information Storage and Retrieval ; Information Systems and Communication Service ; Information Systems Applications (incl.Internet) ; IT in Business ; Maximum likelihood method ; Nodes ; Regular Paper ; Statistical models</subject><ispartof>Knowledge and information systems, 2023-12, Vol.65 (12), p.5601-5634</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-746b1aacd9bdcb224b737a78613b094457a5a0a67b8a04787b686c09ccf562c73</cites><orcidid>0000-0002-1032-950X ; 0000-0001-7370-9991 ; 0000-0002-8907-8319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10115-023-01934-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10115-023-01934-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Yuki, Ryo</creatorcontrib><creatorcontrib>Ike, Yuichi</creatorcontrib><creatorcontrib>Yamanishi, Kenji</creatorcontrib><title>Dimensionality selection for hyperbolic embeddings using decomposed normalized maximum likelihood code-length</title><title>Knowledge and information systems</title><addtitle>Knowl Inf Syst</addtitle><description>Graph embedding methods are effective techniques for representing nodes and their relations in a continuous space. Specifically, the hyperbolic space is more effective than the Euclidean space for embedding graphs with tree-like structures. Thus, it is critical how to select the best dimensionality for the hyperbolic space in which a graph is embedded. This is because we cannot distinguish nodes well with dimensionality that is considerably low, whereas the embedded relations are affected by irregularities in data with excessively high dimensionality. We consider this problem from the viewpoint of statistical model selection for latent variable models. Thereafter, we propose a novel methodology for dimensionality selection based on the minimum description length principle. We aim to introduce a latent variable modeling of hyperbolic embeddings and apply the decomposed normalized maximum likelihood code-length to latent variable model selection. We empirically demonstrated the effectiveness of our method using both synthetic and real-world datasets.</description><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Decomposition</subject><subject>Embedding</subject><subject>Euclidean geometry</subject><subject>Graphical representations</subject><subject>Hyperbolic coordinates</subject><subject>Information Storage and Retrieval</subject><subject>Information Systems and Communication Service</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>IT in Business</subject><subject>Maximum likelihood method</subject><subject>Nodes</subject><subject>Regular Paper</subject><subject>Statistical models</subject><issn>0219-1377</issn><issn>0219-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LxDAUxIsouK5-AU8Bz9G8pE3ao6x_QfCi55Ck6W7WpqlJC66f3q5d8OZp5sH8Bt5k2SWQayBE3CQgAAUmlGECFcsxPcoWhEKFGQA_PnhgQpxmZyltCQHBARaZv3PedsmFTrVu2KFkW2uG6URNiGiz623UoXUGWa9tXbtundCYJkG1NcH3IdkadSH6Cf-erFdfzo8ete7Dtm4TQo1MqC1ubbceNufZSaPaZC8OuszeH-7fVk_45fXxeXX7gg2DfMAi5xqUMnWla6MpzbVgQomSA9OkyvNCqEIRxYUuFclFKTQvuSGVMU3BqRFsmV3NvX0Mn6NNg9yGMU4vJklLQQrOgdMpReeUiSGlaBvZR-dV3Ekgcj-rnGeV06zyd1a5h9gMpSncrW38q_6H-gGj_nzm</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Yuki, Ryo</creator><creator>Ike, Yuichi</creator><creator>Yamanishi, Kenji</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1032-950X</orcidid><orcidid>https://orcid.org/0000-0001-7370-9991</orcidid><orcidid>https://orcid.org/0000-0002-8907-8319</orcidid></search><sort><creationdate>20231201</creationdate><title>Dimensionality selection for hyperbolic embeddings using decomposed normalized maximum likelihood code-length</title><author>Yuki, Ryo ; Ike, Yuichi ; Yamanishi, Kenji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-746b1aacd9bdcb224b737a78613b094457a5a0a67b8a04787b686c09ccf562c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Decomposition</topic><topic>Embedding</topic><topic>Euclidean geometry</topic><topic>Graphical representations</topic><topic>Hyperbolic coordinates</topic><topic>Information Storage and Retrieval</topic><topic>Information Systems and Communication Service</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>IT in Business</topic><topic>Maximum likelihood method</topic><topic>Nodes</topic><topic>Regular Paper</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuki, Ryo</creatorcontrib><creatorcontrib>Ike, Yuichi</creatorcontrib><creatorcontrib>Yamanishi, Kenji</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Knowledge and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuki, Ryo</au><au>Ike, Yuichi</au><au>Yamanishi, Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimensionality selection for hyperbolic embeddings using decomposed normalized maximum likelihood code-length</atitle><jtitle>Knowledge and information systems</jtitle><stitle>Knowl Inf Syst</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>65</volume><issue>12</issue><spage>5601</spage><epage>5634</epage><pages>5601-5634</pages><issn>0219-1377</issn><eissn>0219-3116</eissn><abstract>Graph embedding methods are effective techniques for representing nodes and their relations in a continuous space. Specifically, the hyperbolic space is more effective than the Euclidean space for embedding graphs with tree-like structures. Thus, it is critical how to select the best dimensionality for the hyperbolic space in which a graph is embedded. This is because we cannot distinguish nodes well with dimensionality that is considerably low, whereas the embedded relations are affected by irregularities in data with excessively high dimensionality. We consider this problem from the viewpoint of statistical model selection for latent variable models. Thereafter, we propose a novel methodology for dimensionality selection based on the minimum description length principle. We aim to introduce a latent variable modeling of hyperbolic embeddings and apply the decomposed normalized maximum likelihood code-length to latent variable model selection. We empirically demonstrated the effectiveness of our method using both synthetic and real-world datasets.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10115-023-01934-2</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-1032-950X</orcidid><orcidid>https://orcid.org/0000-0001-7370-9991</orcidid><orcidid>https://orcid.org/0000-0002-8907-8319</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0219-1377 |
ispartof | Knowledge and information systems, 2023-12, Vol.65 (12), p.5601-5634 |
issn | 0219-1377 0219-3116 |
language | eng |
recordid | cdi_proquest_journals_2870566162 |
source | SpringerLink Journals - AutoHoldings |
subjects | Computer Science Data Mining and Knowledge Discovery Database Management Decomposition Embedding Euclidean geometry Graphical representations Hyperbolic coordinates Information Storage and Retrieval Information Systems and Communication Service Information Systems Applications (incl.Internet) IT in Business Maximum likelihood method Nodes Regular Paper Statistical models |
title | Dimensionality selection for hyperbolic embeddings using decomposed normalized maximum likelihood code-length |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimensionality%20selection%20for%20hyperbolic%20embeddings%20using%20decomposed%20normalized%20maximum%20likelihood%20code-length&rft.jtitle=Knowledge%20and%20information%20systems&rft.au=Yuki,%20Ryo&rft.date=2023-12-01&rft.volume=65&rft.issue=12&rft.spage=5601&rft.epage=5634&rft.pages=5601-5634&rft.issn=0219-1377&rft.eissn=0219-3116&rft_id=info:doi/10.1007/s10115-023-01934-2&rft_dat=%3Cproquest_cross%3E2870566162%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870566162&rft_id=info:pmid/&rfr_iscdi=true |