Numerical approximation of nonlinear SPDE’s

The numerical analysis of stochastic parabolic partial differential equations of the form d u + A ( u ) d t = f d t + g d W , is surveyed, where A is a nonlinear partial operator and W a Brownian motion. This manuscript unifies much of the theory developed over the last decade into a cohesive framew...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic partial differential equations : analysis and computations 2023-12, Vol.11 (4), p.1553-1634
Hauptverfasser: Ondreját, Martin, Prohl, Andreas, Walkington, Noel J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1634
container_issue 4
container_start_page 1553
container_title Stochastic partial differential equations : analysis and computations
container_volume 11
creator Ondreját, Martin
Prohl, Andreas
Walkington, Noel J.
description The numerical analysis of stochastic parabolic partial differential equations of the form d u + A ( u ) d t = f d t + g d W , is surveyed, where A is a nonlinear partial operator and W a Brownian motion. This manuscript unifies much of the theory developed over the last decade into a cohesive framework which integrates techniques for the approximation of deterministic partial differential equations with methods for the approximation of stochastic ordinary differential equations. The manuscript is intended to be accessible to audiences versed in either of these disciplines, and examples are presented to illustrate the applicability of the theory.
doi_str_mv 10.1007/s40072-022-00271-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2870352555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870352555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-bb9051546925cb44915464de922c30b2148620ca2fb692e7df8f28c9537dd9983</originalsourceid><addsrcrecordid>eNp9UMFKxDAUDKLgsu4PeCp4jr68JE1zlHV1hUUFFbyFNk2ly25bkxb05m_4e36JWSt68_Dem8PMvGEIOWZwygDUWRBxIwWMA6gY1XtkgkwLCoI97f9iYIdkFsIaABhPFUM5IfRm2Dpf23yT5F3n29d6m_d12yRtlTRts6kbl_vk_u5i8fn-EY7IQZVvgpv93Cl5vFw8zJd0dXt1PT9fUctT3tOi0CCZFKlGaQsh9A6L0mlEy6FAJrIUweZYFZHiVFllFWZWS67KUuuMT8nJ6BsTvQwu9GbdDr6JLw1mCrhEKWVk4ciyvg3Bu8p0Psb3b4aB2TVjxmZMbMZ8N2N0FPFRFCK5eXb-z_of1ReEEWRi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870352555</pqid></control><display><type>article</type><title>Numerical approximation of nonlinear SPDE’s</title><source>SpringerLink Journals</source><creator>Ondreját, Martin ; Prohl, Andreas ; Walkington, Noel J.</creator><creatorcontrib>Ondreját, Martin ; Prohl, Andreas ; Walkington, Noel J.</creatorcontrib><description>The numerical analysis of stochastic parabolic partial differential equations of the form d u + A ( u ) d t = f d t + g d W , is surveyed, where A is a nonlinear partial operator and W a Brownian motion. This manuscript unifies much of the theory developed over the last decade into a cohesive framework which integrates techniques for the approximation of deterministic partial differential equations with methods for the approximation of stochastic ordinary differential equations. The manuscript is intended to be accessible to audiences versed in either of these disciplines, and examples are presented to illustrate the applicability of the theory.</description><identifier>ISSN: 2194-0401</identifier><identifier>EISSN: 2194-041X</identifier><identifier>DOI: 10.1007/s40072-022-00271-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Computational Mathematics and Numerical Analysis ; Computational Science and Engineering ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Parabolic differential equations ; Partial Differential Equations ; Probability Theory and Stochastic Processes ; Statistical Theory and Methods</subject><ispartof>Stochastic partial differential equations : analysis and computations, 2023-12, Vol.11 (4), p.1553-1634</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-bb9051546925cb44915464de922c30b2148620ca2fb692e7df8f28c9537dd9983</citedby><cites>FETCH-LOGICAL-c363t-bb9051546925cb44915464de922c30b2148620ca2fb692e7df8f28c9537dd9983</cites><orcidid>0000-0003-4523-9536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40072-022-00271-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40072-022-00271-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ondreját, Martin</creatorcontrib><creatorcontrib>Prohl, Andreas</creatorcontrib><creatorcontrib>Walkington, Noel J.</creatorcontrib><title>Numerical approximation of nonlinear SPDE’s</title><title>Stochastic partial differential equations : analysis and computations</title><addtitle>Stoch PDE: Anal Comp</addtitle><description>The numerical analysis of stochastic parabolic partial differential equations of the form d u + A ( u ) d t = f d t + g d W , is surveyed, where A is a nonlinear partial operator and W a Brownian motion. This manuscript unifies much of the theory developed over the last decade into a cohesive framework which integrates techniques for the approximation of deterministic partial differential equations with methods for the approximation of stochastic ordinary differential equations. The manuscript is intended to be accessible to audiences versed in either of these disciplines, and examples are presented to illustrate the applicability of the theory.</description><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computational Science and Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Parabolic differential equations</subject><subject>Partial Differential Equations</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistical Theory and Methods</subject><issn>2194-0401</issn><issn>2194-041X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UMFKxDAUDKLgsu4PeCp4jr68JE1zlHV1hUUFFbyFNk2ly25bkxb05m_4e36JWSt68_Dem8PMvGEIOWZwygDUWRBxIwWMA6gY1XtkgkwLCoI97f9iYIdkFsIaABhPFUM5IfRm2Dpf23yT5F3n29d6m_d12yRtlTRts6kbl_vk_u5i8fn-EY7IQZVvgpv93Cl5vFw8zJd0dXt1PT9fUctT3tOi0CCZFKlGaQsh9A6L0mlEy6FAJrIUweZYFZHiVFllFWZWS67KUuuMT8nJ6BsTvQwu9GbdDr6JLw1mCrhEKWVk4ciyvg3Bu8p0Psb3b4aB2TVjxmZMbMZ8N2N0FPFRFCK5eXb-z_of1ReEEWRi</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Ondreját, Martin</creator><creator>Prohl, Andreas</creator><creator>Walkington, Noel J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4523-9536</orcidid></search><sort><creationdate>20231201</creationdate><title>Numerical approximation of nonlinear SPDE’s</title><author>Ondreját, Martin ; Prohl, Andreas ; Walkington, Noel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-bb9051546925cb44915464de922c30b2148620ca2fb692e7df8f28c9537dd9983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computational Science and Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Parabolic differential equations</topic><topic>Partial Differential Equations</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistical Theory and Methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Ondreját, Martin</creatorcontrib><creatorcontrib>Prohl, Andreas</creatorcontrib><creatorcontrib>Walkington, Noel J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Stochastic partial differential equations : analysis and computations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ondreját, Martin</au><au>Prohl, Andreas</au><au>Walkington, Noel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical approximation of nonlinear SPDE’s</atitle><jtitle>Stochastic partial differential equations : analysis and computations</jtitle><stitle>Stoch PDE: Anal Comp</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>11</volume><issue>4</issue><spage>1553</spage><epage>1634</epage><pages>1553-1634</pages><issn>2194-0401</issn><eissn>2194-041X</eissn><abstract>The numerical analysis of stochastic parabolic partial differential equations of the form d u + A ( u ) d t = f d t + g d W , is surveyed, where A is a nonlinear partial operator and W a Brownian motion. This manuscript unifies much of the theory developed over the last decade into a cohesive framework which integrates techniques for the approximation of deterministic partial differential equations with methods for the approximation of stochastic ordinary differential equations. The manuscript is intended to be accessible to audiences versed in either of these disciplines, and examples are presented to illustrate the applicability of the theory.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s40072-022-00271-9</doi><tpages>82</tpages><orcidid>https://orcid.org/0000-0003-4523-9536</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2194-0401
ispartof Stochastic partial differential equations : analysis and computations, 2023-12, Vol.11 (4), p.1553-1634
issn 2194-0401
2194-041X
language eng
recordid cdi_proquest_journals_2870352555
source SpringerLink Journals
subjects Approximation
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Mathematical analysis
Mathematics
Mathematics and Statistics
Numerical Analysis
Parabolic differential equations
Partial Differential Equations
Probability Theory and Stochastic Processes
Statistical Theory and Methods
title Numerical approximation of nonlinear SPDE’s
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A20%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20approximation%20of%20nonlinear%20SPDE%E2%80%99s&rft.jtitle=Stochastic%20partial%20differential%20equations%20:%20analysis%20and%20computations&rft.au=Ondrej%C3%A1t,%20Martin&rft.date=2023-12-01&rft.volume=11&rft.issue=4&rft.spage=1553&rft.epage=1634&rft.pages=1553-1634&rft.issn=2194-0401&rft.eissn=2194-041X&rft_id=info:doi/10.1007/s40072-022-00271-9&rft_dat=%3Cproquest_cross%3E2870352555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870352555&rft_id=info:pmid/&rfr_iscdi=true