DynaCon: Dynamic Robot Planner with Contextual Awareness via LLMs
Mobile robots often rely on pre-existing maps for effective path planning and navigation. However, when these maps are unavailable, particularly in unfamiliar environments, a different approach become essential. This paper introduces DynaCon, a novel system designed to provide mobile robots with con...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-09 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kim, Gyeongmin Kim, Taehyeon Shyam Sundar Kannan Venkatesh, Vishnunandan L N Kim, Donghan Byung-Cheol Min |
description | Mobile robots often rely on pre-existing maps for effective path planning and navigation. However, when these maps are unavailable, particularly in unfamiliar environments, a different approach become essential. This paper introduces DynaCon, a novel system designed to provide mobile robots with contextual awareness and dynamic adaptability during navigation, eliminating the reliance of traditional maps. DynaCon integrates real-time feedback with an object server, prompt engineering, and navigation modules. By harnessing the capabilities of Large Language Models (LLMs), DynaCon not only understands patterns within given numeric series but also excels at categorizing objects into matched spaces. This facilitates dynamic path planner imbued with contextual awareness. We validated the effectiveness of DynaCon through an experiment where a robot successfully navigated to its goal using reasoning. Source code and experiment videos for this work can be found at: https://sites.google.com/view/dynacon. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2870186047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870186047</sourcerecordid><originalsourceid>FETCH-proquest_journals_28701860473</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwdKnMS3TOz7NSADFyM5MVgvKT8ksUAnIS8_JSixTKM0syFIDyJakVJaWJOQqO5YlFqXmpxcUKZZmJCj4-vsU8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGFuYGhhZmBibkycKgAjtzjB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870186047</pqid></control><display><type>article</type><title>DynaCon: Dynamic Robot Planner with Contextual Awareness via LLMs</title><source>Free E- Journals</source><creator>Kim, Gyeongmin ; Kim, Taehyeon ; Shyam Sundar Kannan ; Venkatesh, Vishnunandan L N ; Kim, Donghan ; Byung-Cheol Min</creator><creatorcontrib>Kim, Gyeongmin ; Kim, Taehyeon ; Shyam Sundar Kannan ; Venkatesh, Vishnunandan L N ; Kim, Donghan ; Byung-Cheol Min</creatorcontrib><description>Mobile robots often rely on pre-existing maps for effective path planning and navigation. However, when these maps are unavailable, particularly in unfamiliar environments, a different approach become essential. This paper introduces DynaCon, a novel system designed to provide mobile robots with contextual awareness and dynamic adaptability during navigation, eliminating the reliance of traditional maps. DynaCon integrates real-time feedback with an object server, prompt engineering, and navigation modules. By harnessing the capabilities of Large Language Models (LLMs), DynaCon not only understands patterns within given numeric series but also excels at categorizing objects into matched spaces. This facilitates dynamic path planner imbued with contextual awareness. We validated the effectiveness of DynaCon through an experiment where a robot successfully navigated to its goal using reasoning. Source code and experiment videos for this work can be found at: https://sites.google.com/view/dynacon.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Large language models ; Navigation ; Path planning ; Robots ; Source code</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kim, Gyeongmin</creatorcontrib><creatorcontrib>Kim, Taehyeon</creatorcontrib><creatorcontrib>Shyam Sundar Kannan</creatorcontrib><creatorcontrib>Venkatesh, Vishnunandan L N</creatorcontrib><creatorcontrib>Kim, Donghan</creatorcontrib><creatorcontrib>Byung-Cheol Min</creatorcontrib><title>DynaCon: Dynamic Robot Planner with Contextual Awareness via LLMs</title><title>arXiv.org</title><description>Mobile robots often rely on pre-existing maps for effective path planning and navigation. However, when these maps are unavailable, particularly in unfamiliar environments, a different approach become essential. This paper introduces DynaCon, a novel system designed to provide mobile robots with contextual awareness and dynamic adaptability during navigation, eliminating the reliance of traditional maps. DynaCon integrates real-time feedback with an object server, prompt engineering, and navigation modules. By harnessing the capabilities of Large Language Models (LLMs), DynaCon not only understands patterns within given numeric series but also excels at categorizing objects into matched spaces. This facilitates dynamic path planner imbued with contextual awareness. We validated the effectiveness of DynaCon through an experiment where a robot successfully navigated to its goal using reasoning. Source code and experiment videos for this work can be found at: https://sites.google.com/view/dynacon.</description><subject>Large language models</subject><subject>Navigation</subject><subject>Path planning</subject><subject>Robots</subject><subject>Source code</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwdKnMS3TOz7NSADFyM5MVgvKT8ksUAnIS8_JSixTKM0syFIDyJakVJaWJOQqO5YlFqXmpxcUKZZmJCj4-vsU8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGFuYGhhZmBibkycKgAjtzjB</recordid><startdate>20230927</startdate><enddate>20230927</enddate><creator>Kim, Gyeongmin</creator><creator>Kim, Taehyeon</creator><creator>Shyam Sundar Kannan</creator><creator>Venkatesh, Vishnunandan L N</creator><creator>Kim, Donghan</creator><creator>Byung-Cheol Min</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230927</creationdate><title>DynaCon: Dynamic Robot Planner with Contextual Awareness via LLMs</title><author>Kim, Gyeongmin ; Kim, Taehyeon ; Shyam Sundar Kannan ; Venkatesh, Vishnunandan L N ; Kim, Donghan ; Byung-Cheol Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28701860473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Large language models</topic><topic>Navigation</topic><topic>Path planning</topic><topic>Robots</topic><topic>Source code</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, Gyeongmin</creatorcontrib><creatorcontrib>Kim, Taehyeon</creatorcontrib><creatorcontrib>Shyam Sundar Kannan</creatorcontrib><creatorcontrib>Venkatesh, Vishnunandan L N</creatorcontrib><creatorcontrib>Kim, Donghan</creatorcontrib><creatorcontrib>Byung-Cheol Min</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Gyeongmin</au><au>Kim, Taehyeon</au><au>Shyam Sundar Kannan</au><au>Venkatesh, Vishnunandan L N</au><au>Kim, Donghan</au><au>Byung-Cheol Min</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DynaCon: Dynamic Robot Planner with Contextual Awareness via LLMs</atitle><jtitle>arXiv.org</jtitle><date>2023-09-27</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Mobile robots often rely on pre-existing maps for effective path planning and navigation. However, when these maps are unavailable, particularly in unfamiliar environments, a different approach become essential. This paper introduces DynaCon, a novel system designed to provide mobile robots with contextual awareness and dynamic adaptability during navigation, eliminating the reliance of traditional maps. DynaCon integrates real-time feedback with an object server, prompt engineering, and navigation modules. By harnessing the capabilities of Large Language Models (LLMs), DynaCon not only understands patterns within given numeric series but also excels at categorizing objects into matched spaces. This facilitates dynamic path planner imbued with contextual awareness. We validated the effectiveness of DynaCon through an experiment where a robot successfully navigated to its goal using reasoning. Source code and experiment videos for this work can be found at: https://sites.google.com/view/dynacon.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2870186047 |
source | Free E- Journals |
subjects | Large language models Navigation Path planning Robots Source code |
title | DynaCon: Dynamic Robot Planner with Contextual Awareness via LLMs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DynaCon:%20Dynamic%20Robot%20Planner%20with%20Contextual%20Awareness%20via%20LLMs&rft.jtitle=arXiv.org&rft.au=Kim,%20Gyeongmin&rft.date=2023-09-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2870186047%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870186047&rft_id=info:pmid/&rfr_iscdi=true |