DynaCon: Dynamic Robot Planner with Contextual Awareness via LLMs

Mobile robots often rely on pre-existing maps for effective path planning and navigation. However, when these maps are unavailable, particularly in unfamiliar environments, a different approach become essential. This paper introduces DynaCon, a novel system designed to provide mobile robots with con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Kim, Gyeongmin, Kim, Taehyeon, Shyam Sundar Kannan, Venkatesh, Vishnunandan L N, Kim, Donghan, Byung-Cheol Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kim, Gyeongmin
Kim, Taehyeon
Shyam Sundar Kannan
Venkatesh, Vishnunandan L N
Kim, Donghan
Byung-Cheol Min
description Mobile robots often rely on pre-existing maps for effective path planning and navigation. However, when these maps are unavailable, particularly in unfamiliar environments, a different approach become essential. This paper introduces DynaCon, a novel system designed to provide mobile robots with contextual awareness and dynamic adaptability during navigation, eliminating the reliance of traditional maps. DynaCon integrates real-time feedback with an object server, prompt engineering, and navigation modules. By harnessing the capabilities of Large Language Models (LLMs), DynaCon not only understands patterns within given numeric series but also excels at categorizing objects into matched spaces. This facilitates dynamic path planner imbued with contextual awareness. We validated the effectiveness of DynaCon through an experiment where a robot successfully navigated to its goal using reasoning. Source code and experiment videos for this work can be found at: https://sites.google.com/view/dynacon.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2870186047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870186047</sourcerecordid><originalsourceid>FETCH-proquest_journals_28701860473</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwdKnMS3TOz7NSADFyM5MVgvKT8ksUAnIS8_JSixTKM0syFIDyJakVJaWJOQqO5YlFqXmpxcUKZZmJCj4-vsU8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGFuYGhhZmBibkycKgAjtzjB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870186047</pqid></control><display><type>article</type><title>DynaCon: Dynamic Robot Planner with Contextual Awareness via LLMs</title><source>Free E- Journals</source><creator>Kim, Gyeongmin ; Kim, Taehyeon ; Shyam Sundar Kannan ; Venkatesh, Vishnunandan L N ; Kim, Donghan ; Byung-Cheol Min</creator><creatorcontrib>Kim, Gyeongmin ; Kim, Taehyeon ; Shyam Sundar Kannan ; Venkatesh, Vishnunandan L N ; Kim, Donghan ; Byung-Cheol Min</creatorcontrib><description>Mobile robots often rely on pre-existing maps for effective path planning and navigation. However, when these maps are unavailable, particularly in unfamiliar environments, a different approach become essential. This paper introduces DynaCon, a novel system designed to provide mobile robots with contextual awareness and dynamic adaptability during navigation, eliminating the reliance of traditional maps. DynaCon integrates real-time feedback with an object server, prompt engineering, and navigation modules. By harnessing the capabilities of Large Language Models (LLMs), DynaCon not only understands patterns within given numeric series but also excels at categorizing objects into matched spaces. This facilitates dynamic path planner imbued with contextual awareness. We validated the effectiveness of DynaCon through an experiment where a robot successfully navigated to its goal using reasoning. Source code and experiment videos for this work can be found at: https://sites.google.com/view/dynacon.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Large language models ; Navigation ; Path planning ; Robots ; Source code</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kim, Gyeongmin</creatorcontrib><creatorcontrib>Kim, Taehyeon</creatorcontrib><creatorcontrib>Shyam Sundar Kannan</creatorcontrib><creatorcontrib>Venkatesh, Vishnunandan L N</creatorcontrib><creatorcontrib>Kim, Donghan</creatorcontrib><creatorcontrib>Byung-Cheol Min</creatorcontrib><title>DynaCon: Dynamic Robot Planner with Contextual Awareness via LLMs</title><title>arXiv.org</title><description>Mobile robots often rely on pre-existing maps for effective path planning and navigation. However, when these maps are unavailable, particularly in unfamiliar environments, a different approach become essential. This paper introduces DynaCon, a novel system designed to provide mobile robots with contextual awareness and dynamic adaptability during navigation, eliminating the reliance of traditional maps. DynaCon integrates real-time feedback with an object server, prompt engineering, and navigation modules. By harnessing the capabilities of Large Language Models (LLMs), DynaCon not only understands patterns within given numeric series but also excels at categorizing objects into matched spaces. This facilitates dynamic path planner imbued with contextual awareness. We validated the effectiveness of DynaCon through an experiment where a robot successfully navigated to its goal using reasoning. Source code and experiment videos for this work can be found at: https://sites.google.com/view/dynacon.</description><subject>Large language models</subject><subject>Navigation</subject><subject>Path planning</subject><subject>Robots</subject><subject>Source code</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwdKnMS3TOz7NSADFyM5MVgvKT8ksUAnIS8_JSixTKM0syFIDyJakVJaWJOQqO5YlFqXmpxcUKZZmJCj4-vsU8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGFuYGhhZmBibkycKgAjtzjB</recordid><startdate>20230927</startdate><enddate>20230927</enddate><creator>Kim, Gyeongmin</creator><creator>Kim, Taehyeon</creator><creator>Shyam Sundar Kannan</creator><creator>Venkatesh, Vishnunandan L N</creator><creator>Kim, Donghan</creator><creator>Byung-Cheol Min</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230927</creationdate><title>DynaCon: Dynamic Robot Planner with Contextual Awareness via LLMs</title><author>Kim, Gyeongmin ; Kim, Taehyeon ; Shyam Sundar Kannan ; Venkatesh, Vishnunandan L N ; Kim, Donghan ; Byung-Cheol Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28701860473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Large language models</topic><topic>Navigation</topic><topic>Path planning</topic><topic>Robots</topic><topic>Source code</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, Gyeongmin</creatorcontrib><creatorcontrib>Kim, Taehyeon</creatorcontrib><creatorcontrib>Shyam Sundar Kannan</creatorcontrib><creatorcontrib>Venkatesh, Vishnunandan L N</creatorcontrib><creatorcontrib>Kim, Donghan</creatorcontrib><creatorcontrib>Byung-Cheol Min</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Gyeongmin</au><au>Kim, Taehyeon</au><au>Shyam Sundar Kannan</au><au>Venkatesh, Vishnunandan L N</au><au>Kim, Donghan</au><au>Byung-Cheol Min</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DynaCon: Dynamic Robot Planner with Contextual Awareness via LLMs</atitle><jtitle>arXiv.org</jtitle><date>2023-09-27</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Mobile robots often rely on pre-existing maps for effective path planning and navigation. However, when these maps are unavailable, particularly in unfamiliar environments, a different approach become essential. This paper introduces DynaCon, a novel system designed to provide mobile robots with contextual awareness and dynamic adaptability during navigation, eliminating the reliance of traditional maps. DynaCon integrates real-time feedback with an object server, prompt engineering, and navigation modules. By harnessing the capabilities of Large Language Models (LLMs), DynaCon not only understands patterns within given numeric series but also excels at categorizing objects into matched spaces. This facilitates dynamic path planner imbued with contextual awareness. We validated the effectiveness of DynaCon through an experiment where a robot successfully navigated to its goal using reasoning. Source code and experiment videos for this work can be found at: https://sites.google.com/view/dynacon.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2870186047
source Free E- Journals
subjects Large language models
Navigation
Path planning
Robots
Source code
title DynaCon: Dynamic Robot Planner with Contextual Awareness via LLMs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DynaCon:%20Dynamic%20Robot%20Planner%20with%20Contextual%20Awareness%20via%20LLMs&rft.jtitle=arXiv.org&rft.au=Kim,%20Gyeongmin&rft.date=2023-09-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2870186047%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870186047&rft_id=info:pmid/&rfr_iscdi=true