Revisiting Fuel Subsidies in Indonesia using K-Means, PAM, and CLARA
Indonesia is one of the countries in the world that still applies subsidies for fuel oil. By the law, the Indonesian government must ensure the supply and distribution of fuel for all Indonesian people. To implement this policy properly, understanding the pattern of fuel consumption is fundamental....
Gespeichert in:
Veröffentlicht in: | IAENG international journal of computer science 2023-08, Vol.50 (3), p.858 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 858 |
container_title | IAENG international journal of computer science |
container_volume | 50 |
creator | Prasetyo, Fajar Agung Caraka, Rezzy Eko Kim, Yunho Goldameir, Noor Ell Sulistyowati Tyasti, Avia Enggar Gio, Prana Ugiana Anggoro, Faisal Ramadhani, Muthia Pardamean, Bens |
description | Indonesia is one of the countries in the world that still applies subsidies for fuel oil. By the law, the Indonesian government must ensure the supply and distribution of fuel for all Indonesian people. To implement this policy properly, understanding the pattern of fuel consumption is fundamental. In this study, clustering will be used to determine the categories of districts and cities based on subsidized fuel consumption patterns. Our research used several methods to compare which cluster method is the most optimal; the methods include kmeans, Partitioning Around Medoids (PAM), and Clustering Large Applications (CLARA). The results show that k-means is the best clustering method with the highest Dunn index and Silhouette coefficient compared to others. The optimum cluster number we get is two and represents fuel consumption from several districts and cities. Some districts and cities had underaverage consumption and needed to be monitored. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2870078477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870078477</sourcerecordid><originalsourceid>FETCH-LOGICAL-p98t-72fb0411b4e87587842ba195e07e14d44f62cdb9bf479314c78ae2917e55455f3</originalsourceid><addsrcrecordid>eNotjVFLwzAURoMoOOb-Q8DXFZr0pjd5LNXpsEOZe_BtJMuNREY6l9bfb8U9fefh45wrNhNamMJICdcXrlX9ccsWOUdXAmCltapm7GFLPzHHIaZPvhrpyN9Hl6OPlHlMfJ18nyhHy8f893gpNmRTXvK3ZrPkNnneds22uWM3wR4zLS47Z7vV4659LrrXp3XbdMXJ6KFAGaayEA5Io9KoQTorjKISSYAHCLU8eGdcADSVgANqS9IIJKVAqVDN2f2_9nTuv0fKw_6rH89pKu6lxrKcjIjVL3ZrRbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870078477</pqid></control><display><type>article</type><title>Revisiting Fuel Subsidies in Indonesia using K-Means, PAM, and CLARA</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Prasetyo, Fajar Agung ; Caraka, Rezzy Eko ; Kim, Yunho ; Goldameir, Noor Ell ; Sulistyowati ; Tyasti, Avia Enggar ; Gio, Prana Ugiana ; Anggoro, Faisal ; Ramadhani, Muthia ; Pardamean, Bens</creator><creatorcontrib>Prasetyo, Fajar Agung ; Caraka, Rezzy Eko ; Kim, Yunho ; Goldameir, Noor Ell ; Sulistyowati ; Tyasti, Avia Enggar ; Gio, Prana Ugiana ; Anggoro, Faisal ; Ramadhani, Muthia ; Pardamean, Bens</creatorcontrib><description>Indonesia is one of the countries in the world that still applies subsidies for fuel oil. By the law, the Indonesian government must ensure the supply and distribution of fuel for all Indonesian people. To implement this policy properly, understanding the pattern of fuel consumption is fundamental. In this study, clustering will be used to determine the categories of districts and cities based on subsidized fuel consumption patterns. Our research used several methods to compare which cluster method is the most optimal; the methods include kmeans, Partitioning Around Medoids (PAM), and Clustering Large Applications (CLARA). The results show that k-means is the best clustering method with the highest Dunn index and Silhouette coefficient compared to others. The optimum cluster number we get is two and represents fuel consumption from several districts and cities. Some districts and cities had underaverage consumption and needed to be monitored.</description><identifier>ISSN: 1819-656X</identifier><identifier>EISSN: 1819-9224</identifier><language>eng</language><publisher>Hong Kong: International Association of Engineers</publisher><subject>Cities ; Clustering ; Fuel consumption ; Fuel oils ; Optimization ; Subsidies</subject><ispartof>IAENG international journal of computer science, 2023-08, Vol.50 (3), p.858</ispartof><rights>Copyright International Association of Engineers Aug 16, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Prasetyo, Fajar Agung</creatorcontrib><creatorcontrib>Caraka, Rezzy Eko</creatorcontrib><creatorcontrib>Kim, Yunho</creatorcontrib><creatorcontrib>Goldameir, Noor Ell</creatorcontrib><creatorcontrib>Sulistyowati</creatorcontrib><creatorcontrib>Tyasti, Avia Enggar</creatorcontrib><creatorcontrib>Gio, Prana Ugiana</creatorcontrib><creatorcontrib>Anggoro, Faisal</creatorcontrib><creatorcontrib>Ramadhani, Muthia</creatorcontrib><creatorcontrib>Pardamean, Bens</creatorcontrib><title>Revisiting Fuel Subsidies in Indonesia using K-Means, PAM, and CLARA</title><title>IAENG international journal of computer science</title><description>Indonesia is one of the countries in the world that still applies subsidies for fuel oil. By the law, the Indonesian government must ensure the supply and distribution of fuel for all Indonesian people. To implement this policy properly, understanding the pattern of fuel consumption is fundamental. In this study, clustering will be used to determine the categories of districts and cities based on subsidized fuel consumption patterns. Our research used several methods to compare which cluster method is the most optimal; the methods include kmeans, Partitioning Around Medoids (PAM), and Clustering Large Applications (CLARA). The results show that k-means is the best clustering method with the highest Dunn index and Silhouette coefficient compared to others. The optimum cluster number we get is two and represents fuel consumption from several districts and cities. Some districts and cities had underaverage consumption and needed to be monitored.</description><subject>Cities</subject><subject>Clustering</subject><subject>Fuel consumption</subject><subject>Fuel oils</subject><subject>Optimization</subject><subject>Subsidies</subject><issn>1819-656X</issn><issn>1819-9224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotjVFLwzAURoMoOOb-Q8DXFZr0pjd5LNXpsEOZe_BtJMuNREY6l9bfb8U9fefh45wrNhNamMJICdcXrlX9ccsWOUdXAmCltapm7GFLPzHHIaZPvhrpyN9Hl6OPlHlMfJ18nyhHy8f893gpNmRTXvK3ZrPkNnneds22uWM3wR4zLS47Z7vV4659LrrXp3XbdMXJ6KFAGaayEA5Io9KoQTorjKISSYAHCLU8eGdcADSVgANqS9IIJKVAqVDN2f2_9nTuv0fKw_6rH89pKu6lxrKcjIjVL3ZrRbg</recordid><startdate>20230816</startdate><enddate>20230816</enddate><creator>Prasetyo, Fajar Agung</creator><creator>Caraka, Rezzy Eko</creator><creator>Kim, Yunho</creator><creator>Goldameir, Noor Ell</creator><creator>Sulistyowati</creator><creator>Tyasti, Avia Enggar</creator><creator>Gio, Prana Ugiana</creator><creator>Anggoro, Faisal</creator><creator>Ramadhani, Muthia</creator><creator>Pardamean, Bens</creator><general>International Association of Engineers</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230816</creationdate><title>Revisiting Fuel Subsidies in Indonesia using K-Means, PAM, and CLARA</title><author>Prasetyo, Fajar Agung ; Caraka, Rezzy Eko ; Kim, Yunho ; Goldameir, Noor Ell ; Sulistyowati ; Tyasti, Avia Enggar ; Gio, Prana Ugiana ; Anggoro, Faisal ; Ramadhani, Muthia ; Pardamean, Bens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p98t-72fb0411b4e87587842ba195e07e14d44f62cdb9bf479314c78ae2917e55455f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cities</topic><topic>Clustering</topic><topic>Fuel consumption</topic><topic>Fuel oils</topic><topic>Optimization</topic><topic>Subsidies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasetyo, Fajar Agung</creatorcontrib><creatorcontrib>Caraka, Rezzy Eko</creatorcontrib><creatorcontrib>Kim, Yunho</creatorcontrib><creatorcontrib>Goldameir, Noor Ell</creatorcontrib><creatorcontrib>Sulistyowati</creatorcontrib><creatorcontrib>Tyasti, Avia Enggar</creatorcontrib><creatorcontrib>Gio, Prana Ugiana</creatorcontrib><creatorcontrib>Anggoro, Faisal</creatorcontrib><creatorcontrib>Ramadhani, Muthia</creatorcontrib><creatorcontrib>Pardamean, Bens</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IAENG international journal of computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasetyo, Fajar Agung</au><au>Caraka, Rezzy Eko</au><au>Kim, Yunho</au><au>Goldameir, Noor Ell</au><au>Sulistyowati</au><au>Tyasti, Avia Enggar</au><au>Gio, Prana Ugiana</au><au>Anggoro, Faisal</au><au>Ramadhani, Muthia</au><au>Pardamean, Bens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting Fuel Subsidies in Indonesia using K-Means, PAM, and CLARA</atitle><jtitle>IAENG international journal of computer science</jtitle><date>2023-08-16</date><risdate>2023</risdate><volume>50</volume><issue>3</issue><spage>858</spage><pages>858-</pages><issn>1819-656X</issn><eissn>1819-9224</eissn><abstract>Indonesia is one of the countries in the world that still applies subsidies for fuel oil. By the law, the Indonesian government must ensure the supply and distribution of fuel for all Indonesian people. To implement this policy properly, understanding the pattern of fuel consumption is fundamental. In this study, clustering will be used to determine the categories of districts and cities based on subsidized fuel consumption patterns. Our research used several methods to compare which cluster method is the most optimal; the methods include kmeans, Partitioning Around Medoids (PAM), and Clustering Large Applications (CLARA). The results show that k-means is the best clustering method with the highest Dunn index and Silhouette coefficient compared to others. The optimum cluster number we get is two and represents fuel consumption from several districts and cities. Some districts and cities had underaverage consumption and needed to be monitored.</abstract><cop>Hong Kong</cop><pub>International Association of Engineers</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1819-656X |
ispartof | IAENG international journal of computer science, 2023-08, Vol.50 (3), p.858 |
issn | 1819-656X 1819-9224 |
language | eng |
recordid | cdi_proquest_journals_2870078477 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Cities Clustering Fuel consumption Fuel oils Optimization Subsidies |
title | Revisiting Fuel Subsidies in Indonesia using K-Means, PAM, and CLARA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20Fuel%20Subsidies%20in%20Indonesia%20using%20K-Means,%20PAM,%20and%20CLARA&rft.jtitle=IAENG%20international%20journal%20of%20computer%20science&rft.au=Prasetyo,%20Fajar%20Agung&rft.date=2023-08-16&rft.volume=50&rft.issue=3&rft.spage=858&rft.pages=858-&rft.issn=1819-656X&rft.eissn=1819-9224&rft_id=info:doi/&rft_dat=%3Cproquest%3E2870078477%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870078477&rft_id=info:pmid/&rfr_iscdi=true |