Revisiting Fuel Subsidies in Indonesia using K-Means, PAM, and CLARA

Indonesia is one of the countries in the world that still applies subsidies for fuel oil. By the law, the Indonesian government must ensure the supply and distribution of fuel for all Indonesian people. To implement this policy properly, understanding the pattern of fuel consumption is fundamental....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IAENG international journal of computer science 2023-08, Vol.50 (3), p.858
Hauptverfasser: Prasetyo, Fajar Agung, Caraka, Rezzy Eko, Kim, Yunho, Goldameir, Noor Ell, Sulistyowati, Tyasti, Avia Enggar, Gio, Prana Ugiana, Anggoro, Faisal, Ramadhani, Muthia, Pardamean, Bens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 858
container_title IAENG international journal of computer science
container_volume 50
creator Prasetyo, Fajar Agung
Caraka, Rezzy Eko
Kim, Yunho
Goldameir, Noor Ell
Sulistyowati
Tyasti, Avia Enggar
Gio, Prana Ugiana
Anggoro, Faisal
Ramadhani, Muthia
Pardamean, Bens
description Indonesia is one of the countries in the world that still applies subsidies for fuel oil. By the law, the Indonesian government must ensure the supply and distribution of fuel for all Indonesian people. To implement this policy properly, understanding the pattern of fuel consumption is fundamental. In this study, clustering will be used to determine the categories of districts and cities based on subsidized fuel consumption patterns. Our research used several methods to compare which cluster method is the most optimal; the methods include kmeans, Partitioning Around Medoids (PAM), and Clustering Large Applications (CLARA). The results show that k-means is the best clustering method with the highest Dunn index and Silhouette coefficient compared to others. The optimum cluster number we get is two and represents fuel consumption from several districts and cities. Some districts and cities had underaverage consumption and needed to be monitored.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2870078477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870078477</sourcerecordid><originalsourceid>FETCH-LOGICAL-p98t-72fb0411b4e87587842ba195e07e14d44f62cdb9bf479314c78ae2917e55455f3</originalsourceid><addsrcrecordid>eNotjVFLwzAURoMoOOb-Q8DXFZr0pjd5LNXpsEOZe_BtJMuNREY6l9bfb8U9fefh45wrNhNamMJICdcXrlX9ccsWOUdXAmCltapm7GFLPzHHIaZPvhrpyN9Hl6OPlHlMfJ18nyhHy8f893gpNmRTXvK3ZrPkNnneds22uWM3wR4zLS47Z7vV4659LrrXp3XbdMXJ6KFAGaayEA5Io9KoQTorjKISSYAHCLU8eGdcADSVgANqS9IIJKVAqVDN2f2_9nTuv0fKw_6rH89pKu6lxrKcjIjVL3ZrRbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870078477</pqid></control><display><type>article</type><title>Revisiting Fuel Subsidies in Indonesia using K-Means, PAM, and CLARA</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Prasetyo, Fajar Agung ; Caraka, Rezzy Eko ; Kim, Yunho ; Goldameir, Noor Ell ; Sulistyowati ; Tyasti, Avia Enggar ; Gio, Prana Ugiana ; Anggoro, Faisal ; Ramadhani, Muthia ; Pardamean, Bens</creator><creatorcontrib>Prasetyo, Fajar Agung ; Caraka, Rezzy Eko ; Kim, Yunho ; Goldameir, Noor Ell ; Sulistyowati ; Tyasti, Avia Enggar ; Gio, Prana Ugiana ; Anggoro, Faisal ; Ramadhani, Muthia ; Pardamean, Bens</creatorcontrib><description>Indonesia is one of the countries in the world that still applies subsidies for fuel oil. By the law, the Indonesian government must ensure the supply and distribution of fuel for all Indonesian people. To implement this policy properly, understanding the pattern of fuel consumption is fundamental. In this study, clustering will be used to determine the categories of districts and cities based on subsidized fuel consumption patterns. Our research used several methods to compare which cluster method is the most optimal; the methods include kmeans, Partitioning Around Medoids (PAM), and Clustering Large Applications (CLARA). The results show that k-means is the best clustering method with the highest Dunn index and Silhouette coefficient compared to others. The optimum cluster number we get is two and represents fuel consumption from several districts and cities. Some districts and cities had underaverage consumption and needed to be monitored.</description><identifier>ISSN: 1819-656X</identifier><identifier>EISSN: 1819-9224</identifier><language>eng</language><publisher>Hong Kong: International Association of Engineers</publisher><subject>Cities ; Clustering ; Fuel consumption ; Fuel oils ; Optimization ; Subsidies</subject><ispartof>IAENG international journal of computer science, 2023-08, Vol.50 (3), p.858</ispartof><rights>Copyright International Association of Engineers Aug 16, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Prasetyo, Fajar Agung</creatorcontrib><creatorcontrib>Caraka, Rezzy Eko</creatorcontrib><creatorcontrib>Kim, Yunho</creatorcontrib><creatorcontrib>Goldameir, Noor Ell</creatorcontrib><creatorcontrib>Sulistyowati</creatorcontrib><creatorcontrib>Tyasti, Avia Enggar</creatorcontrib><creatorcontrib>Gio, Prana Ugiana</creatorcontrib><creatorcontrib>Anggoro, Faisal</creatorcontrib><creatorcontrib>Ramadhani, Muthia</creatorcontrib><creatorcontrib>Pardamean, Bens</creatorcontrib><title>Revisiting Fuel Subsidies in Indonesia using K-Means, PAM, and CLARA</title><title>IAENG international journal of computer science</title><description>Indonesia is one of the countries in the world that still applies subsidies for fuel oil. By the law, the Indonesian government must ensure the supply and distribution of fuel for all Indonesian people. To implement this policy properly, understanding the pattern of fuel consumption is fundamental. In this study, clustering will be used to determine the categories of districts and cities based on subsidized fuel consumption patterns. Our research used several methods to compare which cluster method is the most optimal; the methods include kmeans, Partitioning Around Medoids (PAM), and Clustering Large Applications (CLARA). The results show that k-means is the best clustering method with the highest Dunn index and Silhouette coefficient compared to others. The optimum cluster number we get is two and represents fuel consumption from several districts and cities. Some districts and cities had underaverage consumption and needed to be monitored.</description><subject>Cities</subject><subject>Clustering</subject><subject>Fuel consumption</subject><subject>Fuel oils</subject><subject>Optimization</subject><subject>Subsidies</subject><issn>1819-656X</issn><issn>1819-9224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotjVFLwzAURoMoOOb-Q8DXFZr0pjd5LNXpsEOZe_BtJMuNREY6l9bfb8U9fefh45wrNhNamMJICdcXrlX9ccsWOUdXAmCltapm7GFLPzHHIaZPvhrpyN9Hl6OPlHlMfJ18nyhHy8f893gpNmRTXvK3ZrPkNnneds22uWM3wR4zLS47Z7vV4659LrrXp3XbdMXJ6KFAGaayEA5Io9KoQTorjKISSYAHCLU8eGdcADSVgANqS9IIJKVAqVDN2f2_9nTuv0fKw_6rH89pKu6lxrKcjIjVL3ZrRbg</recordid><startdate>20230816</startdate><enddate>20230816</enddate><creator>Prasetyo, Fajar Agung</creator><creator>Caraka, Rezzy Eko</creator><creator>Kim, Yunho</creator><creator>Goldameir, Noor Ell</creator><creator>Sulistyowati</creator><creator>Tyasti, Avia Enggar</creator><creator>Gio, Prana Ugiana</creator><creator>Anggoro, Faisal</creator><creator>Ramadhani, Muthia</creator><creator>Pardamean, Bens</creator><general>International Association of Engineers</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230816</creationdate><title>Revisiting Fuel Subsidies in Indonesia using K-Means, PAM, and CLARA</title><author>Prasetyo, Fajar Agung ; Caraka, Rezzy Eko ; Kim, Yunho ; Goldameir, Noor Ell ; Sulistyowati ; Tyasti, Avia Enggar ; Gio, Prana Ugiana ; Anggoro, Faisal ; Ramadhani, Muthia ; Pardamean, Bens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p98t-72fb0411b4e87587842ba195e07e14d44f62cdb9bf479314c78ae2917e55455f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cities</topic><topic>Clustering</topic><topic>Fuel consumption</topic><topic>Fuel oils</topic><topic>Optimization</topic><topic>Subsidies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasetyo, Fajar Agung</creatorcontrib><creatorcontrib>Caraka, Rezzy Eko</creatorcontrib><creatorcontrib>Kim, Yunho</creatorcontrib><creatorcontrib>Goldameir, Noor Ell</creatorcontrib><creatorcontrib>Sulistyowati</creatorcontrib><creatorcontrib>Tyasti, Avia Enggar</creatorcontrib><creatorcontrib>Gio, Prana Ugiana</creatorcontrib><creatorcontrib>Anggoro, Faisal</creatorcontrib><creatorcontrib>Ramadhani, Muthia</creatorcontrib><creatorcontrib>Pardamean, Bens</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IAENG international journal of computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasetyo, Fajar Agung</au><au>Caraka, Rezzy Eko</au><au>Kim, Yunho</au><au>Goldameir, Noor Ell</au><au>Sulistyowati</au><au>Tyasti, Avia Enggar</au><au>Gio, Prana Ugiana</au><au>Anggoro, Faisal</au><au>Ramadhani, Muthia</au><au>Pardamean, Bens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting Fuel Subsidies in Indonesia using K-Means, PAM, and CLARA</atitle><jtitle>IAENG international journal of computer science</jtitle><date>2023-08-16</date><risdate>2023</risdate><volume>50</volume><issue>3</issue><spage>858</spage><pages>858-</pages><issn>1819-656X</issn><eissn>1819-9224</eissn><abstract>Indonesia is one of the countries in the world that still applies subsidies for fuel oil. By the law, the Indonesian government must ensure the supply and distribution of fuel for all Indonesian people. To implement this policy properly, understanding the pattern of fuel consumption is fundamental. In this study, clustering will be used to determine the categories of districts and cities based on subsidized fuel consumption patterns. Our research used several methods to compare which cluster method is the most optimal; the methods include kmeans, Partitioning Around Medoids (PAM), and Clustering Large Applications (CLARA). The results show that k-means is the best clustering method with the highest Dunn index and Silhouette coefficient compared to others. The optimum cluster number we get is two and represents fuel consumption from several districts and cities. Some districts and cities had underaverage consumption and needed to be monitored.</abstract><cop>Hong Kong</cop><pub>International Association of Engineers</pub></addata></record>
fulltext fulltext
identifier ISSN: 1819-656X
ispartof IAENG international journal of computer science, 2023-08, Vol.50 (3), p.858
issn 1819-656X
1819-9224
language eng
recordid cdi_proquest_journals_2870078477
source EZB-FREE-00999 freely available EZB journals
subjects Cities
Clustering
Fuel consumption
Fuel oils
Optimization
Subsidies
title Revisiting Fuel Subsidies in Indonesia using K-Means, PAM, and CLARA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20Fuel%20Subsidies%20in%20Indonesia%20using%20K-Means,%20PAM,%20and%20CLARA&rft.jtitle=IAENG%20international%20journal%20of%20computer%20science&rft.au=Prasetyo,%20Fajar%20Agung&rft.date=2023-08-16&rft.volume=50&rft.issue=3&rft.spage=858&rft.pages=858-&rft.issn=1819-656X&rft.eissn=1819-9224&rft_id=info:doi/&rft_dat=%3Cproquest%3E2870078477%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870078477&rft_id=info:pmid/&rfr_iscdi=true