Wilson lines and their Laurent positivity
For a marked surface Σ and a semisimple algebraic group G of adjoint type, we study the Wilson line morphism g [ c ] : P G , Σ → G associated with the homotopy class of an arc c connecting boundary intervals of Σ , which is the comparison element of pinnings via parallel-transport. The matrix coeffi...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2023-10, Vol.305 (2), Article 34 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a marked surface
Σ
and a semisimple algebraic group
G
of adjoint type, we study the Wilson line morphism
g
[
c
]
:
P
G
,
Σ
→
G
associated with the homotopy class of an arc
c
connecting boundary intervals of
Σ
, which is the comparison element of pinnings via parallel-transport. The matrix coefficients of the Wilson lines give a generating set of the function algebra
O
(
P
G
,
Σ
)
when
Σ
has no punctures. The Wilson lines have the multiplicative nature with respect to the gluing morphisms introduced by Goncharov–Shen [
18
], hence can be decomposed into triangular pieces with respect to a given ideal triangulation of
Σ
. We show that the matrix coefficients
c
f
,
v
V
(
g
[
c
]
)
give Laurent polynomials with positive integral coefficients in the Goncharov–Shen coordinate system associated with any decorated triangulation of
Σ
, for suitable
f
and
v
. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-023-03355-x |