Swarm Intelligence for Segmentation of Leaf Images

Leaf segmentation is important in assisting environmentalists to automatically segment the foreground leaf from the noisy background. The accuracy with which the image is segmented and the unwanted background areas are removed determines the result acquired from machine learning algorithms employed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:National Academy science letters 2023-10, Vol.46 (5), p.413-421
Hauptverfasser: Kumar, Anuj, Sachar, Silky
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 421
container_issue 5
container_start_page 413
container_title National Academy science letters
container_volume 46
creator Kumar, Anuj
Sachar, Silky
description Leaf segmentation is important in assisting environmentalists to automatically segment the foreground leaf from the noisy background. The accuracy with which the image is segmented and the unwanted background areas are removed determines the result acquired from machine learning algorithms employed in feature extraction or classification. In this paper, the most commonly used unsupervised clustering algorithm K -means has been discussed, which has further been optimized using particle swarm optimization and firefly algorithms, and the performance of the three techniques has been compared and results have been presented. The evaluation metrics used are sensitivity, specificity, segmentation accuracy, precision, dice, Jaccard distance and MCC. The experiments have been performed on 50 images from each class taken from the PlantVillage dataset.
doi_str_mv 10.1007/s40009-023-01285-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2870006287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870006287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-c3e9554e84e1ac2a637121e21e0a7b7f1d34158f18da9a69addc438b7117f6863</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsNT-A54CnqMz-5HdHKX4USh4qIK3ZZvMhpQmqbsp4n_v1gjehIE3h997wzzGrhFuEUDfRQkAZQ5c5IDcqBzO2IxzBTlqJc_ZDE67kvh-yRYx7hINqlAK-YzxzacLXbbqR9rv24b6ijI_hGxDTUf96MZ26LPBZ2tyPlt1rqF4xS6820da_OqcvT0-vC6f8_XL02p5v84rrmHMK0GlUpKMJHQVd4XQyJHSgNNb7bEWEpXxaGpXuqJ0dV1JYbYaUfvCFGLObqbcQxg-jhRHuxuOoU8nLTc6_VAkSRSfqCoMMQby9hDazoUvi2BP9dipHpvqsT_1WEgmMZligvuGwl_0P65vIVtlnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870006287</pqid></control><display><type>article</type><title>Swarm Intelligence for Segmentation of Leaf Images</title><source>SpringerNature Journals</source><creator>Kumar, Anuj ; Sachar, Silky</creator><creatorcontrib>Kumar, Anuj ; Sachar, Silky</creatorcontrib><description>Leaf segmentation is important in assisting environmentalists to automatically segment the foreground leaf from the noisy background. The accuracy with which the image is segmented and the unwanted background areas are removed determines the result acquired from machine learning algorithms employed in feature extraction or classification. In this paper, the most commonly used unsupervised clustering algorithm K -means has been discussed, which has further been optimized using particle swarm optimization and firefly algorithms, and the performance of the three techniques has been compared and results have been presented. The evaluation metrics used are sensitivity, specificity, segmentation accuracy, precision, dice, Jaccard distance and MCC. The experiments have been performed on 50 images from each class taken from the PlantVillage dataset.</description><identifier>ISSN: 0250-541X</identifier><identifier>EISSN: 2250-1754</identifier><identifier>DOI: 10.1007/s40009-023-01285-0</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Algorithms ; Background noise ; Clustering ; Environmentalists ; Feature extraction ; Heuristic methods ; History of Science ; Humanities and Social Sciences ; Image processing ; Image segmentation ; Leaves ; Machine learning ; multidisciplinary ; Particle swarm optimization ; Science ; Science (multidisciplinary) ; Segmentation ; Short Communication ; Swarm intelligence</subject><ispartof>National Academy science letters, 2023-10, Vol.46 (5), p.413-421</ispartof><rights>The Author(s), under exclusive licence to The National Academy of Sciences, India 2023</rights><rights>The Author(s), under exclusive licence to The National Academy of Sciences, India 2023.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-c3e9554e84e1ac2a637121e21e0a7b7f1d34158f18da9a69addc438b7117f6863</cites><orcidid>0000-0002-0786-0527</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40009-023-01285-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40009-023-01285-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kumar, Anuj</creatorcontrib><creatorcontrib>Sachar, Silky</creatorcontrib><title>Swarm Intelligence for Segmentation of Leaf Images</title><title>National Academy science letters</title><addtitle>Natl. Acad. Sci. Lett</addtitle><description>Leaf segmentation is important in assisting environmentalists to automatically segment the foreground leaf from the noisy background. The accuracy with which the image is segmented and the unwanted background areas are removed determines the result acquired from machine learning algorithms employed in feature extraction or classification. In this paper, the most commonly used unsupervised clustering algorithm K -means has been discussed, which has further been optimized using particle swarm optimization and firefly algorithms, and the performance of the three techniques has been compared and results have been presented. The evaluation metrics used are sensitivity, specificity, segmentation accuracy, precision, dice, Jaccard distance and MCC. The experiments have been performed on 50 images from each class taken from the PlantVillage dataset.</description><subject>Algorithms</subject><subject>Background noise</subject><subject>Clustering</subject><subject>Environmentalists</subject><subject>Feature extraction</subject><subject>Heuristic methods</subject><subject>History of Science</subject><subject>Humanities and Social Sciences</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Leaves</subject><subject>Machine learning</subject><subject>multidisciplinary</subject><subject>Particle swarm optimization</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Segmentation</subject><subject>Short Communication</subject><subject>Swarm intelligence</subject><issn>0250-541X</issn><issn>2250-1754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRsNT-A54CnqMz-5HdHKX4USh4qIK3ZZvMhpQmqbsp4n_v1gjehIE3h997wzzGrhFuEUDfRQkAZQ5c5IDcqBzO2IxzBTlqJc_ZDE67kvh-yRYx7hINqlAK-YzxzacLXbbqR9rv24b6ijI_hGxDTUf96MZ26LPBZ2tyPlt1rqF4xS6820da_OqcvT0-vC6f8_XL02p5v84rrmHMK0GlUpKMJHQVd4XQyJHSgNNb7bEWEpXxaGpXuqJ0dV1JYbYaUfvCFGLObqbcQxg-jhRHuxuOoU8nLTc6_VAkSRSfqCoMMQby9hDazoUvi2BP9dipHpvqsT_1WEgmMZligvuGwl_0P65vIVtlnA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Kumar, Anuj</creator><creator>Sachar, Silky</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0786-0527</orcidid></search><sort><creationdate>20231001</creationdate><title>Swarm Intelligence for Segmentation of Leaf Images</title><author>Kumar, Anuj ; Sachar, Silky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-c3e9554e84e1ac2a637121e21e0a7b7f1d34158f18da9a69addc438b7117f6863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Background noise</topic><topic>Clustering</topic><topic>Environmentalists</topic><topic>Feature extraction</topic><topic>Heuristic methods</topic><topic>History of Science</topic><topic>Humanities and Social Sciences</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Leaves</topic><topic>Machine learning</topic><topic>multidisciplinary</topic><topic>Particle swarm optimization</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Segmentation</topic><topic>Short Communication</topic><topic>Swarm intelligence</topic><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Anuj</creatorcontrib><creatorcontrib>Sachar, Silky</creatorcontrib><collection>CrossRef</collection><jtitle>National Academy science letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Anuj</au><au>Sachar, Silky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Swarm Intelligence for Segmentation of Leaf Images</atitle><jtitle>National Academy science letters</jtitle><stitle>Natl. Acad. Sci. Lett</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>46</volume><issue>5</issue><spage>413</spage><epage>421</epage><pages>413-421</pages><issn>0250-541X</issn><eissn>2250-1754</eissn><abstract>Leaf segmentation is important in assisting environmentalists to automatically segment the foreground leaf from the noisy background. The accuracy with which the image is segmented and the unwanted background areas are removed determines the result acquired from machine learning algorithms employed in feature extraction or classification. In this paper, the most commonly used unsupervised clustering algorithm K -means has been discussed, which has further been optimized using particle swarm optimization and firefly algorithms, and the performance of the three techniques has been compared and results have been presented. The evaluation metrics used are sensitivity, specificity, segmentation accuracy, precision, dice, Jaccard distance and MCC. The experiments have been performed on 50 images from each class taken from the PlantVillage dataset.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40009-023-01285-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0786-0527</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0250-541X
ispartof National Academy science letters, 2023-10, Vol.46 (5), p.413-421
issn 0250-541X
2250-1754
language eng
recordid cdi_proquest_journals_2870006287
source SpringerNature Journals
subjects Algorithms
Background noise
Clustering
Environmentalists
Feature extraction
Heuristic methods
History of Science
Humanities and Social Sciences
Image processing
Image segmentation
Leaves
Machine learning
multidisciplinary
Particle swarm optimization
Science
Science (multidisciplinary)
Segmentation
Short Communication
Swarm intelligence
title Swarm Intelligence for Segmentation of Leaf Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A04%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Swarm%20Intelligence%20for%20Segmentation%20of%20Leaf%20Images&rft.jtitle=National%20Academy%20science%20letters&rft.au=Kumar,%20Anuj&rft.date=2023-10-01&rft.volume=46&rft.issue=5&rft.spage=413&rft.epage=421&rft.pages=413-421&rft.issn=0250-541X&rft.eissn=2250-1754&rft_id=info:doi/10.1007/s40009-023-01285-0&rft_dat=%3Cproquest_cross%3E2870006287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870006287&rft_id=info:pmid/&rfr_iscdi=true