Itô-Wentzell-Lions Formula for Measure Dependent Random Fields under Full and Conditional Measure Flows

We present several Itô-Wentzell formulae on Wiener spaces for real-valued functional random field of Itô type that depend on measure flows. We distinguish the full- and the marginal-measure flow cases in the spirit of mean-field games. Derivatives with respect to the measure components are understoo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Potential analysis 2023-10, Vol.59 (3), p.1313-1344
Hauptverfasser: dos Reis, Gonçalo, Platonov, Vadim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1344
container_issue 3
container_start_page 1313
container_title Potential analysis
container_volume 59
creator dos Reis, Gonçalo
Platonov, Vadim
description We present several Itô-Wentzell formulae on Wiener spaces for real-valued functional random field of Itô type that depend on measure flows. We distinguish the full- and the marginal-measure flow cases in the spirit of mean-field games. Derivatives with respect to the measure components are understood in the sense of Lions.
doi_str_mv 10.1007/s11118-022-10012-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2870006003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870006003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-69ddbeb334dd8c7c64f65ba8dfce3fcb9eef07b487b820cdc779747dfdb886b63</originalsourceid><addsrcrecordid>eNp9UMtKBDEQDKLguvoDngKeo3nMJpmjrI4urAii6C1MHqOzZCdrMoPod_kH_pjREb3Zh266qCq6C4BDgo8JxuIkkVwSYUpR3knuW2BCZoKikpYP22CCS8oR5Zjsgr2UVhhjKoScgKdF__GO7l3Xvznv0bINXYJViOvB17AJEV65Og3RwTO3cZ3NPHhTdzasYdU6bxMcMhhhNXgPMw7nobNtn11q_yutfHhJ-2CnqX1yBz9zCu6q89v5JVpeXyzmp0tkGGc94qW12mnGCmulEYYXDZ_pWtrGONYYXTrXYKELKbSk2FgjRCkKYRurpeSasyk4Gn03MTwPLvVqFYaYz0mKSpH_5hizzKIjy8SQUnSN2sR2XcdXRbD6SlSNiaqcqPpOVJEsYqMoZXL36OKf9T-qT5Kge14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870006003</pqid></control><display><type>article</type><title>Itô-Wentzell-Lions Formula for Measure Dependent Random Fields under Full and Conditional Measure Flows</title><source>SpringerLink Journals - AutoHoldings</source><creator>dos Reis, Gonçalo ; Platonov, Vadim</creator><creatorcontrib>dos Reis, Gonçalo ; Platonov, Vadim</creatorcontrib><description>We present several Itô-Wentzell formulae on Wiener spaces for real-valued functional random field of Itô type that depend on measure flows. We distinguish the full- and the marginal-measure flow cases in the spirit of mean-field games. Derivatives with respect to the measure components are understood in the sense of Lions.</description><identifier>ISSN: 0926-2601</identifier><identifier>EISSN: 1572-929X</identifier><identifier>DOI: 10.1007/s11118-022-10012-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Fields (mathematics) ; Functional Analysis ; Geometry ; Mathematics ; Mathematics and Statistics ; Potential Theory ; Probability Theory and Stochastic Processes</subject><ispartof>Potential analysis, 2023-10, Vol.59 (3), p.1313-1344</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-69ddbeb334dd8c7c64f65ba8dfce3fcb9eef07b487b820cdc779747dfdb886b63</citedby><cites>FETCH-LOGICAL-c363t-69ddbeb334dd8c7c64f65ba8dfce3fcb9eef07b487b820cdc779747dfdb886b63</cites><orcidid>0000-0002-4993-2672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11118-022-10012-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11118-022-10012-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>dos Reis, Gonçalo</creatorcontrib><creatorcontrib>Platonov, Vadim</creatorcontrib><title>Itô-Wentzell-Lions Formula for Measure Dependent Random Fields under Full and Conditional Measure Flows</title><title>Potential analysis</title><addtitle>Potential Anal</addtitle><description>We present several Itô-Wentzell formulae on Wiener spaces for real-valued functional random field of Itô type that depend on measure flows. We distinguish the full- and the marginal-measure flow cases in the spirit of mean-field games. Derivatives with respect to the measure components are understood in the sense of Lions.</description><subject>Fields (mathematics)</subject><subject>Functional Analysis</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Potential Theory</subject><subject>Probability Theory and Stochastic Processes</subject><issn>0926-2601</issn><issn>1572-929X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UMtKBDEQDKLguvoDngKeo3nMJpmjrI4urAii6C1MHqOzZCdrMoPod_kH_pjREb3Zh266qCq6C4BDgo8JxuIkkVwSYUpR3knuW2BCZoKikpYP22CCS8oR5Zjsgr2UVhhjKoScgKdF__GO7l3Xvznv0bINXYJViOvB17AJEV65Og3RwTO3cZ3NPHhTdzasYdU6bxMcMhhhNXgPMw7nobNtn11q_yutfHhJ-2CnqX1yBz9zCu6q89v5JVpeXyzmp0tkGGc94qW12mnGCmulEYYXDZ_pWtrGONYYXTrXYKELKbSk2FgjRCkKYRurpeSasyk4Gn03MTwPLvVqFYaYz0mKSpH_5hizzKIjy8SQUnSN2sR2XcdXRbD6SlSNiaqcqPpOVJEsYqMoZXL36OKf9T-qT5Kge14</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>dos Reis, Gonçalo</creator><creator>Platonov, Vadim</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4993-2672</orcidid></search><sort><creationdate>20231001</creationdate><title>Itô-Wentzell-Lions Formula for Measure Dependent Random Fields under Full and Conditional Measure Flows</title><author>dos Reis, Gonçalo ; Platonov, Vadim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-69ddbeb334dd8c7c64f65ba8dfce3fcb9eef07b487b820cdc779747dfdb886b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Fields (mathematics)</topic><topic>Functional Analysis</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Potential Theory</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>dos Reis, Gonçalo</creatorcontrib><creatorcontrib>Platonov, Vadim</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Potential analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>dos Reis, Gonçalo</au><au>Platonov, Vadim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Itô-Wentzell-Lions Formula for Measure Dependent Random Fields under Full and Conditional Measure Flows</atitle><jtitle>Potential analysis</jtitle><stitle>Potential Anal</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>59</volume><issue>3</issue><spage>1313</spage><epage>1344</epage><pages>1313-1344</pages><issn>0926-2601</issn><eissn>1572-929X</eissn><abstract>We present several Itô-Wentzell formulae on Wiener spaces for real-valued functional random field of Itô type that depend on measure flows. We distinguish the full- and the marginal-measure flow cases in the spirit of mean-field games. Derivatives with respect to the measure components are understood in the sense of Lions.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11118-022-10012-1</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-4993-2672</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-2601
ispartof Potential analysis, 2023-10, Vol.59 (3), p.1313-1344
issn 0926-2601
1572-929X
language eng
recordid cdi_proquest_journals_2870006003
source SpringerLink Journals - AutoHoldings
subjects Fields (mathematics)
Functional Analysis
Geometry
Mathematics
Mathematics and Statistics
Potential Theory
Probability Theory and Stochastic Processes
title Itô-Wentzell-Lions Formula for Measure Dependent Random Fields under Full and Conditional Measure Flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A56%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=It%C3%B4-Wentzell-Lions%20Formula%20for%20Measure%20Dependent%20Random%20Fields%20under%20Full%20and%20Conditional%20Measure%20Flows&rft.jtitle=Potential%20analysis&rft.au=dos%20Reis,%20Gon%C3%A7alo&rft.date=2023-10-01&rft.volume=59&rft.issue=3&rft.spage=1313&rft.epage=1344&rft.pages=1313-1344&rft.issn=0926-2601&rft.eissn=1572-929X&rft_id=info:doi/10.1007/s11118-022-10012-1&rft_dat=%3Cproquest_cross%3E2870006003%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870006003&rft_id=info:pmid/&rfr_iscdi=true