A Hybrid Metaheuristic Model for Efficient Analytical Business Prediction

Accurate and efficient business analytical predictions are essential for decision making in today's competitive landscape. Involves using data analysis, statistical methods, and predictive modeling to extract insights and make decisions. Current trends focus on applying business analytics to pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications 2023, Vol.14 (8)
Hauptverfasser: Elveny, Marischa, Nasution, Mahyuddin K. M, Syah, Rahmad B. Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title International journal of advanced computer science & applications
container_volume 14
creator Elveny, Marischa
Nasution, Mahyuddin K. M
Syah, Rahmad B. Y
description Accurate and efficient business analytical predictions are essential for decision making in today's competitive landscape. Involves using data analysis, statistical methods, and predictive modeling to extract insights and make decisions. Current trends focus on applying business analytics to predictions. Optimizing business analytics predictions involves increasing the accuracy and efficiency of predictive models used to forecast future trends, behavior, and outcomes in the business environment. By analyzing data and developing optimization strategies, businesses can improve their operations, reduce costs, and increase profits. The analytic business optimization method uses a hybrid PSO (Particle Swarm Optimization) and GSO (Gravitational Search Optimization) algorithm to increase the efficiency and effectiveness of the decision-making process in business. In this approach, the PSO algorithm is used to explore the search space and find the global best solution, while the GSO algorithm is used to refine the search around the global best solution. The hybrid meta-heuristic method optimizes the three components of business analytics: descriptive, predictive, and perspective. The hybrid model is designed to strike a balance between exploration and exploitation, ensuring effective search and convergence to high-quality solutions. The results show that the R2 value for each optimization parameter is close to one, indicating a more fit model. The RMSE value measures the average prediction error, with a lower error indicating that the model is performing well. MSE represents the mean of the squared difference between the predicted and optimized values. A lower error value indicates a higher level of accuracy.
doi_str_mv 10.14569/IJACSA.2023.0140848
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2869804012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869804012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-ace1a9be97c3c970b878ea4188f01e02a2a0b59859794a479a7c663aa9885c3b3</originalsourceid><addsrcrecordid>eNotkE1Lw0AQhhdRsGj_gYcFz6mzH8nuHmOpttKioIK3ZbLd4JaY1N3k0H9vbPte5oV5GIaHkDsGMybzwjysXsr5eznjwMUMmAQt9QWZcJYXWZ4ruDx2nTFQX9dkmtIOxgjDCy0mZFXS5aGKYUs3vsdvP8SQ-uDoptv6htZdpIu6Di74tqdli81hXGJDH4cUWp8SfYt-G1wfuvaWXNXYJD89zxvy-bT4mC-z9evzal6uM8eV7DN0nqGpvFFOOKOg0kp7lEzrGpgHjhyhyo3OjTISpTKoXFEIRKN17kQlbsj96e4-dr-DT73ddUMcX0uW68JokMD4SMkT5WKXUvS13cfwg_FgGdijN3vyZv-92bM38Qf3E1_5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869804012</pqid></control><display><type>article</type><title>A Hybrid Metaheuristic Model for Efficient Analytical Business Prediction</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Elveny, Marischa ; Nasution, Mahyuddin K. M ; Syah, Rahmad B. Y</creator><creatorcontrib>Elveny, Marischa ; Nasution, Mahyuddin K. M ; Syah, Rahmad B. Y</creatorcontrib><description>Accurate and efficient business analytical predictions are essential for decision making in today's competitive landscape. Involves using data analysis, statistical methods, and predictive modeling to extract insights and make decisions. Current trends focus on applying business analytics to predictions. Optimizing business analytics predictions involves increasing the accuracy and efficiency of predictive models used to forecast future trends, behavior, and outcomes in the business environment. By analyzing data and developing optimization strategies, businesses can improve their operations, reduce costs, and increase profits. The analytic business optimization method uses a hybrid PSO (Particle Swarm Optimization) and GSO (Gravitational Search Optimization) algorithm to increase the efficiency and effectiveness of the decision-making process in business. In this approach, the PSO algorithm is used to explore the search space and find the global best solution, while the GSO algorithm is used to refine the search around the global best solution. The hybrid meta-heuristic method optimizes the three components of business analytics: descriptive, predictive, and perspective. The hybrid model is designed to strike a balance between exploration and exploitation, ensuring effective search and convergence to high-quality solutions. The results show that the R2 value for each optimization parameter is close to one, indicating a more fit model. The RMSE value measures the average prediction error, with a lower error indicating that the model is performing well. MSE represents the mean of the squared difference between the predicted and optimized values. A lower error value indicates a higher level of accuracy.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2023.0140848</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Accuracy ; Algorithms ; Analytics ; Business analytics ; Business competition ; Cost analysis ; Data analysis ; Decision analysis ; Decision making ; Error analysis ; Heuristic methods ; Optimization ; Particle swarm optimization ; Prediction models ; Predictions ; Root-mean-square errors ; Searching ; Statistical methods ; Trends</subject><ispartof>International journal of advanced computer science &amp; applications, 2023, Vol.14 (8)</ispartof><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Elveny, Marischa</creatorcontrib><creatorcontrib>Nasution, Mahyuddin K. M</creatorcontrib><creatorcontrib>Syah, Rahmad B. Y</creatorcontrib><title>A Hybrid Metaheuristic Model for Efficient Analytical Business Prediction</title><title>International journal of advanced computer science &amp; applications</title><description>Accurate and efficient business analytical predictions are essential for decision making in today's competitive landscape. Involves using data analysis, statistical methods, and predictive modeling to extract insights and make decisions. Current trends focus on applying business analytics to predictions. Optimizing business analytics predictions involves increasing the accuracy and efficiency of predictive models used to forecast future trends, behavior, and outcomes in the business environment. By analyzing data and developing optimization strategies, businesses can improve their operations, reduce costs, and increase profits. The analytic business optimization method uses a hybrid PSO (Particle Swarm Optimization) and GSO (Gravitational Search Optimization) algorithm to increase the efficiency and effectiveness of the decision-making process in business. In this approach, the PSO algorithm is used to explore the search space and find the global best solution, while the GSO algorithm is used to refine the search around the global best solution. The hybrid meta-heuristic method optimizes the three components of business analytics: descriptive, predictive, and perspective. The hybrid model is designed to strike a balance between exploration and exploitation, ensuring effective search and convergence to high-quality solutions. The results show that the R2 value for each optimization parameter is close to one, indicating a more fit model. The RMSE value measures the average prediction error, with a lower error indicating that the model is performing well. MSE represents the mean of the squared difference between the predicted and optimized values. A lower error value indicates a higher level of accuracy.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analytics</subject><subject>Business analytics</subject><subject>Business competition</subject><subject>Cost analysis</subject><subject>Data analysis</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Error analysis</subject><subject>Heuristic methods</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Root-mean-square errors</subject><subject>Searching</subject><subject>Statistical methods</subject><subject>Trends</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1Lw0AQhhdRsGj_gYcFz6mzH8nuHmOpttKioIK3ZbLd4JaY1N3k0H9vbPte5oV5GIaHkDsGMybzwjysXsr5eznjwMUMmAQt9QWZcJYXWZ4ruDx2nTFQX9dkmtIOxgjDCy0mZFXS5aGKYUs3vsdvP8SQ-uDoptv6htZdpIu6Di74tqdli81hXGJDH4cUWp8SfYt-G1wfuvaWXNXYJD89zxvy-bT4mC-z9evzal6uM8eV7DN0nqGpvFFOOKOg0kp7lEzrGpgHjhyhyo3OjTISpTKoXFEIRKN17kQlbsj96e4-dr-DT73ddUMcX0uW68JokMD4SMkT5WKXUvS13cfwg_FgGdijN3vyZv-92bM38Qf3E1_5</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Elveny, Marischa</creator><creator>Nasution, Mahyuddin K. M</creator><creator>Syah, Rahmad B. Y</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2023</creationdate><title>A Hybrid Metaheuristic Model for Efficient Analytical Business Prediction</title><author>Elveny, Marischa ; Nasution, Mahyuddin K. M ; Syah, Rahmad B. Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-ace1a9be97c3c970b878ea4188f01e02a2a0b59859794a479a7c663aa9885c3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analytics</topic><topic>Business analytics</topic><topic>Business competition</topic><topic>Cost analysis</topic><topic>Data analysis</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Error analysis</topic><topic>Heuristic methods</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Root-mean-square errors</topic><topic>Searching</topic><topic>Statistical methods</topic><topic>Trends</topic><toplevel>online_resources</toplevel><creatorcontrib>Elveny, Marischa</creatorcontrib><creatorcontrib>Nasution, Mahyuddin K. M</creatorcontrib><creatorcontrib>Syah, Rahmad B. Y</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elveny, Marischa</au><au>Nasution, Mahyuddin K. M</au><au>Syah, Rahmad B. Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Metaheuristic Model for Efficient Analytical Business Prediction</atitle><jtitle>International journal of advanced computer science &amp; applications</jtitle><date>2023</date><risdate>2023</risdate><volume>14</volume><issue>8</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>Accurate and efficient business analytical predictions are essential for decision making in today's competitive landscape. Involves using data analysis, statistical methods, and predictive modeling to extract insights and make decisions. Current trends focus on applying business analytics to predictions. Optimizing business analytics predictions involves increasing the accuracy and efficiency of predictive models used to forecast future trends, behavior, and outcomes in the business environment. By analyzing data and developing optimization strategies, businesses can improve their operations, reduce costs, and increase profits. The analytic business optimization method uses a hybrid PSO (Particle Swarm Optimization) and GSO (Gravitational Search Optimization) algorithm to increase the efficiency and effectiveness of the decision-making process in business. In this approach, the PSO algorithm is used to explore the search space and find the global best solution, while the GSO algorithm is used to refine the search around the global best solution. The hybrid meta-heuristic method optimizes the three components of business analytics: descriptive, predictive, and perspective. The hybrid model is designed to strike a balance between exploration and exploitation, ensuring effective search and convergence to high-quality solutions. The results show that the R2 value for each optimization parameter is close to one, indicating a more fit model. The RMSE value measures the average prediction error, with a lower error indicating that the model is performing well. MSE represents the mean of the squared difference between the predicted and optimized values. A lower error value indicates a higher level of accuracy.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2023.0140848</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-107X
ispartof International journal of advanced computer science & applications, 2023, Vol.14 (8)
issn 2158-107X
2156-5570
language eng
recordid cdi_proquest_journals_2869804012
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Algorithms
Analytics
Business analytics
Business competition
Cost analysis
Data analysis
Decision analysis
Decision making
Error analysis
Heuristic methods
Optimization
Particle swarm optimization
Prediction models
Predictions
Root-mean-square errors
Searching
Statistical methods
Trends
title A Hybrid Metaheuristic Model for Efficient Analytical Business Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A59%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Metaheuristic%20Model%20for%20Efficient%20Analytical%20Business%20Prediction&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Elveny,%20Marischa&rft.date=2023&rft.volume=14&rft.issue=8&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2023.0140848&rft_dat=%3Cproquest_cross%3E2869804012%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869804012&rft_id=info:pmid/&rfr_iscdi=true