Methodological Insights Towards Leveraging Performance in Video Object Tracking and Detection
Video Object Detection and Tracking (VODT), one of its integral operations of surveillance system in present time, mechanizes a way to identify and track the target object autonomously and seamlessly within its visual field. However, the challenges associated with video feeding are immensely high, a...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2023, Vol.14 (8) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | International journal of advanced computer science & applications |
container_volume | 14 |
creator | -, Divyaprabha Kurian, M. Z |
description | Video Object Detection and Tracking (VODT), one of its integral operations of surveillance system in present time, mechanizes a way to identify and track the target object autonomously and seamlessly within its visual field. However, the challenges associated with video feeding are immensely high, and the scene context is out of human control, posing an impediment to a successful model of VODT. The presented work has discussed about effectiveness of existing VODT approaches considering its identified taxonomies viz. satellite based, remote sensing-based, unmanned-based, Real-time Tracking based, behavioral analysis and event detection based, integration of multiple data sources, and privacy and ethics. Further, research trend associated with cumulative publications and evolving methods to realize the frequently used methodologies in VODT. Further, the results of review showcase that there is prominent research gap of manifold attributes that demands to be addressed for improving performance of VODT. |
doi_str_mv | 10.14569/IJACSA.2023.0140851 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2869803777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869803777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-e2195438b6393c2cfecd7c5e55211c3d709df8a9c5472cc41c72948e38cff6493</originalsourceid><addsrcrecordid>eNotkNtKAzEQhoMoWLRv4EXA6605bpLLUk-VSgWreCMhnc1ut7abmmwV397tYW5mGD7-Hz6ErigZUCFzczN-Go5ehwNGGB8QKoiW9AT1GJV5JqUip_tbZ5Soj3PUT2lJuuGG5Zr30OezbxehCKtQ1eBWeNykulq0Cc_Cr4tFwhP_46Or6qbCLz6WIa5dAx7XDX6vCx_wdL700OJZdPC1g1xT4Fvfdr86NJforHSr5PvHfYHe7u9mo8dsMn0Yj4aTDJgSbeYZNVJwPc-54cCg9FAokF5KRinwQhFTlNoZkEIxAEFBMSO05xrKMheGX6DrQ-4mhu-tT61dhm1sukrLdG404UqpjhIHCmJIKfrSbmK9dvHPUmL3Lu3Bpd25tEeX_B-C3mey</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869803777</pqid></control><display><type>article</type><title>Methodological Insights Towards Leveraging Performance in Video Object Tracking and Detection</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>-, Divyaprabha ; Kurian, M. Z</creator><creatorcontrib>-, Divyaprabha ; Kurian, M. Z</creatorcontrib><description>Video Object Detection and Tracking (VODT), one of its integral operations of surveillance system in present time, mechanizes a way to identify and track the target object autonomously and seamlessly within its visual field. However, the challenges associated with video feeding are immensely high, and the scene context is out of human control, posing an impediment to a successful model of VODT. The presented work has discussed about effectiveness of existing VODT approaches considering its identified taxonomies viz. satellite based, remote sensing-based, unmanned-based, Real-time Tracking based, behavioral analysis and event detection based, integration of multiple data sources, and privacy and ethics. Further, research trend associated with cumulative publications and evolving methods to realize the frequently used methodologies in VODT. Further, the results of review showcase that there is prominent research gap of manifold attributes that demands to be addressed for improving performance of VODT.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2023.0140851</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Automobile safety ; Computer science ; Internet of Things ; Object recognition ; Personal protective equipment ; Remote sensing ; Smart cities ; Surveillance ; Surveillance systems ; Taxonomy ; Tracking ; Traffic ; Trends ; Visual fields</subject><ispartof>International journal of advanced computer science & applications, 2023, Vol.14 (8)</ispartof><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27921,27922,27923</link.rule.ids></links><search><creatorcontrib>-, Divyaprabha</creatorcontrib><creatorcontrib>Kurian, M. Z</creatorcontrib><title>Methodological Insights Towards Leveraging Performance in Video Object Tracking and Detection</title><title>International journal of advanced computer science & applications</title><description>Video Object Detection and Tracking (VODT), one of its integral operations of surveillance system in present time, mechanizes a way to identify and track the target object autonomously and seamlessly within its visual field. However, the challenges associated with video feeding are immensely high, and the scene context is out of human control, posing an impediment to a successful model of VODT. The presented work has discussed about effectiveness of existing VODT approaches considering its identified taxonomies viz. satellite based, remote sensing-based, unmanned-based, Real-time Tracking based, behavioral analysis and event detection based, integration of multiple data sources, and privacy and ethics. Further, research trend associated with cumulative publications and evolving methods to realize the frequently used methodologies in VODT. Further, the results of review showcase that there is prominent research gap of manifold attributes that demands to be addressed for improving performance of VODT.</description><subject>Automobile safety</subject><subject>Computer science</subject><subject>Internet of Things</subject><subject>Object recognition</subject><subject>Personal protective equipment</subject><subject>Remote sensing</subject><subject>Smart cities</subject><subject>Surveillance</subject><subject>Surveillance systems</subject><subject>Taxonomy</subject><subject>Tracking</subject><subject>Traffic</subject><subject>Trends</subject><subject>Visual fields</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkNtKAzEQhoMoWLRv4EXA6605bpLLUk-VSgWreCMhnc1ut7abmmwV397tYW5mGD7-Hz6ErigZUCFzczN-Go5ehwNGGB8QKoiW9AT1GJV5JqUip_tbZ5Soj3PUT2lJuuGG5Zr30OezbxehCKtQ1eBWeNykulq0Cc_Cr4tFwhP_46Or6qbCLz6WIa5dAx7XDX6vCx_wdL700OJZdPC1g1xT4Fvfdr86NJforHSr5PvHfYHe7u9mo8dsMn0Yj4aTDJgSbeYZNVJwPc-54cCg9FAokF5KRinwQhFTlNoZkEIxAEFBMSO05xrKMheGX6DrQ-4mhu-tT61dhm1sukrLdG404UqpjhIHCmJIKfrSbmK9dvHPUmL3Lu3Bpd25tEeX_B-C3mey</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>-, Divyaprabha</creator><creator>Kurian, M. Z</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>2023</creationdate><title>Methodological Insights Towards Leveraging Performance in Video Object Tracking and Detection</title><author>-, Divyaprabha ; Kurian, M. Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-e2195438b6393c2cfecd7c5e55211c3d709df8a9c5472cc41c72948e38cff6493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automobile safety</topic><topic>Computer science</topic><topic>Internet of Things</topic><topic>Object recognition</topic><topic>Personal protective equipment</topic><topic>Remote sensing</topic><topic>Smart cities</topic><topic>Surveillance</topic><topic>Surveillance systems</topic><topic>Taxonomy</topic><topic>Tracking</topic><topic>Traffic</topic><topic>Trends</topic><topic>Visual fields</topic><toplevel>online_resources</toplevel><creatorcontrib>-, Divyaprabha</creatorcontrib><creatorcontrib>Kurian, M. Z</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>-, Divyaprabha</au><au>Kurian, M. Z</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methodological Insights Towards Leveraging Performance in Video Object Tracking and Detection</atitle><jtitle>International journal of advanced computer science & applications</jtitle><date>2023</date><risdate>2023</risdate><volume>14</volume><issue>8</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>Video Object Detection and Tracking (VODT), one of its integral operations of surveillance system in present time, mechanizes a way to identify and track the target object autonomously and seamlessly within its visual field. However, the challenges associated with video feeding are immensely high, and the scene context is out of human control, posing an impediment to a successful model of VODT. The presented work has discussed about effectiveness of existing VODT approaches considering its identified taxonomies viz. satellite based, remote sensing-based, unmanned-based, Real-time Tracking based, behavioral analysis and event detection based, integration of multiple data sources, and privacy and ethics. Further, research trend associated with cumulative publications and evolving methods to realize the frequently used methodologies in VODT. Further, the results of review showcase that there is prominent research gap of manifold attributes that demands to be addressed for improving performance of VODT.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2023.0140851</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-107X |
ispartof | International journal of advanced computer science & applications, 2023, Vol.14 (8) |
issn | 2158-107X 2156-5570 |
language | eng |
recordid | cdi_proquest_journals_2869803777 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Automobile safety Computer science Internet of Things Object recognition Personal protective equipment Remote sensing Smart cities Surveillance Surveillance systems Taxonomy Tracking Traffic Trends Visual fields |
title | Methodological Insights Towards Leveraging Performance in Video Object Tracking and Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A19%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methodological%20Insights%20Towards%20Leveraging%20Performance%20in%20Video%20Object%20Tracking%20and%20Detection&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=-,%20Divyaprabha&rft.date=2023&rft.volume=14&rft.issue=8&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2023.0140851&rft_dat=%3Cproquest_cross%3E2869803777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869803777&rft_id=info:pmid/&rfr_iscdi=true |