On \(2\)-superirreducible polynomials over finite fields
We investigate \(k\)-superirreducible polynomials, by which we mean irreducible polynomials that remain irreducible under any polynomial substitution of positive degree at most \(k\). Let \(\mathbb F\) be a finite field of characteristic \(p\). We show that no \(2\)-superirreducible polynomials exis...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bober, Jonathan W Du, Lara Fretwell, Dan Kopp, Gene S Wooley, Trevor D |
description | We investigate \(k\)-superirreducible polynomials, by which we mean irreducible polynomials that remain irreducible under any polynomial substitution of positive degree at most \(k\). Let \(\mathbb F\) be a finite field of characteristic \(p\). We show that no \(2\)-superirreducible polynomials exist in \(\mathbb F[t]\) when \(p=2\) and that no such polynomials of odd degree exist when \(p\) is odd. We address the remaining case in which \(p\) is odd and the polynomials have even degree by giving an explicit formula for the number of monic 2-superirreducible polynomials having even degree \(d\). This formula is analogous to that given by Gauss for the number of monic irreducible polynomials of given degree over a finite field. We discuss the associated asymptotic behaviour when either the degree of the polynomial or the size of the finite field tends to infinity. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2869799814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869799814</sourcerecordid><originalsourceid>FETCH-proquest_journals_28697998143</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8M9TiNEwitHULS4tSC3KLCpKTSlNzkzKSVUoyM-pzMvPzUzMKVbIL0stUkjLzMssSQVSqTkpxTwMrGlAmVReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKN7IwszS3tLQwNDEmThUAKpk2Ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869799814</pqid></control><display><type>article</type><title>On \(2\)-superirreducible polynomials over finite fields</title><source>Free E- Journals</source><creator>Bober, Jonathan W ; Du, Lara ; Fretwell, Dan ; Kopp, Gene S ; Wooley, Trevor D</creator><creatorcontrib>Bober, Jonathan W ; Du, Lara ; Fretwell, Dan ; Kopp, Gene S ; Wooley, Trevor D</creatorcontrib><description>We investigate \(k\)-superirreducible polynomials, by which we mean irreducible polynomials that remain irreducible under any polynomial substitution of positive degree at most \(k\). Let \(\mathbb F\) be a finite field of characteristic \(p\). We show that no \(2\)-superirreducible polynomials exist in \(\mathbb F[t]\) when \(p=2\) and that no such polynomials of odd degree exist when \(p\) is odd. We address the remaining case in which \(p\) is odd and the polynomials have even degree by giving an explicit formula for the number of monic 2-superirreducible polynomials having even degree \(d\). This formula is analogous to that given by Gauss for the number of monic irreducible polynomials of given degree over a finite field. We discuss the associated asymptotic behaviour when either the degree of the polynomial or the size of the finite field tends to infinity.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Fields (mathematics) ; Polynomials</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Bober, Jonathan W</creatorcontrib><creatorcontrib>Du, Lara</creatorcontrib><creatorcontrib>Fretwell, Dan</creatorcontrib><creatorcontrib>Kopp, Gene S</creatorcontrib><creatorcontrib>Wooley, Trevor D</creatorcontrib><title>On \(2\)-superirreducible polynomials over finite fields</title><title>arXiv.org</title><description>We investigate \(k\)-superirreducible polynomials, by which we mean irreducible polynomials that remain irreducible under any polynomial substitution of positive degree at most \(k\). Let \(\mathbb F\) be a finite field of characteristic \(p\). We show that no \(2\)-superirreducible polynomials exist in \(\mathbb F[t]\) when \(p=2\) and that no such polynomials of odd degree exist when \(p\) is odd. We address the remaining case in which \(p\) is odd and the polynomials have even degree by giving an explicit formula for the number of monic 2-superirreducible polynomials having even degree \(d\). This formula is analogous to that given by Gauss for the number of monic irreducible polynomials of given degree over a finite field. We discuss the associated asymptotic behaviour when either the degree of the polynomial or the size of the finite field tends to infinity.</description><subject>Asymptotic properties</subject><subject>Fields (mathematics)</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8M9TiNEwitHULS4tSC3KLCpKTSlNzkzKSVUoyM-pzMvPzUzMKVbIL0stUkjLzMssSQVSqTkpxTwMrGlAmVReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKN7IwszS3tLQwNDEmThUAKpk2Ig</recordid><startdate>20240827</startdate><enddate>20240827</enddate><creator>Bober, Jonathan W</creator><creator>Du, Lara</creator><creator>Fretwell, Dan</creator><creator>Kopp, Gene S</creator><creator>Wooley, Trevor D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240827</creationdate><title>On \(2\)-superirreducible polynomials over finite fields</title><author>Bober, Jonathan W ; Du, Lara ; Fretwell, Dan ; Kopp, Gene S ; Wooley, Trevor D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28697998143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic properties</topic><topic>Fields (mathematics)</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Bober, Jonathan W</creatorcontrib><creatorcontrib>Du, Lara</creatorcontrib><creatorcontrib>Fretwell, Dan</creatorcontrib><creatorcontrib>Kopp, Gene S</creatorcontrib><creatorcontrib>Wooley, Trevor D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bober, Jonathan W</au><au>Du, Lara</au><au>Fretwell, Dan</au><au>Kopp, Gene S</au><au>Wooley, Trevor D</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On \(2\)-superirreducible polynomials over finite fields</atitle><jtitle>arXiv.org</jtitle><date>2024-08-27</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We investigate \(k\)-superirreducible polynomials, by which we mean irreducible polynomials that remain irreducible under any polynomial substitution of positive degree at most \(k\). Let \(\mathbb F\) be a finite field of characteristic \(p\). We show that no \(2\)-superirreducible polynomials exist in \(\mathbb F[t]\) when \(p=2\) and that no such polynomials of odd degree exist when \(p\) is odd. We address the remaining case in which \(p\) is odd and the polynomials have even degree by giving an explicit formula for the number of monic 2-superirreducible polynomials having even degree \(d\). This formula is analogous to that given by Gauss for the number of monic irreducible polynomials of given degree over a finite field. We discuss the associated asymptotic behaviour when either the degree of the polynomial or the size of the finite field tends to infinity.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2869799814 |
source | Free E- Journals |
subjects | Asymptotic properties Fields (mathematics) Polynomials |
title | On \(2\)-superirreducible polynomials over finite fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20%5C(2%5C)-superirreducible%20polynomials%20over%20finite%20fields&rft.jtitle=arXiv.org&rft.au=Bober,%20Jonathan%20W&rft.date=2024-08-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2869799814%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869799814&rft_id=info:pmid/&rfr_iscdi=true |