Research on Magnetic Rollers for Recovering Non-Ferrous Metals from End-of-Life Vehicles Employing Machine Learning

Recovering copper foil and crushed aluminum from end-of-life vehicles (ELVs) is a significant issue in the recycling industry. As a key technology for sorting aluminum, copper, and other non-ferrous metals, eddy current separation (ECS) is efficient in isolating the non-ferrous metals according to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2023-09, Vol.15 (18), p.13451
Hauptverfasser: Jia, Youdong, Liu, Jianxiong, Li, Zhengfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page 13451
container_title Sustainability
container_volume 15
creator Jia, Youdong
Liu, Jianxiong
Li, Zhengfang
description Recovering copper foil and crushed aluminum from end-of-life vehicles (ELVs) is a significant issue in the recycling industry. As a key technology for sorting aluminum, copper, and other non-ferrous metals, eddy current separation (ECS) is efficient in isolating the non-ferrous metals according to their different electrical conductivity and density. However, further research is still needed in the separation of large-size copper foil and crushed aluminum from scrapped vehicles. In this study, support vector regression (SVR) and the sparrow search algorithm (SSA) are exploited for the first time to be used in optimizing the Halbach magnetic roller. Firstly, the numerical simulation results are based on the response surface methodology (RSM). Then, the accuracy of four kernel functions employing SVR is compared to select a kernel function. The sparrow search algorithm (SSA) is proposed to optimize the structural parameters of the Halbach magnetic roller, concentrating on the above-selected kernel function. Meanwhile, the parameters are confirmed. Numerical simulation results indicate that machine learning for magnetic roller optimization is feasible.
doi_str_mv 10.3390/su151813451
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2869688191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A771811469</galeid><sourcerecordid>A771811469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-6919e62815956678be11531eab10af9e62155615ba849d03aabeb7b38a54a79c3</originalsourceid><addsrcrecordid>eNpVkd9rAjEMx4-xwWTzaf9AYU9jnGus7V0fRXQTdAP34_Xo1ZxWzta1d2P-96u4B00eEpLPN4EkSe6A9hiT9Cm0wCEHNuBwkXT6NIMUKKeXJ_l10g1hQ6MxBhJEJwkLDKi8XhNnyVytLDZGk4Wra_SBVM6TBWr3g97YFXl1Np2g964NZI6NqiPh3ZaM7TJ1VTozFZIvXBtdYyDj7a52-4NsrvTaWCSzuMjGwm1yVUUtdv_jTfI5GX-MXtLZ2_N0NJylmmXQpEKCRNHPgUsuRJaXCMAZoCqBqurQAs4F8FLlA7mkTKkSy6xkueIDlUnNbpL749ydd98thqbYuNbbuLLo50KKPI83iFTvSK1UjYWxlWu80tGXuDXaWaxMrA-zLN4WBkJGwcOZIDIN_jYr1YZQTN8X5-zjkdXeheCxKnbebJXfF0CLw9eKk6-xP9ISh_0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869688191</pqid></control><display><type>article</type><title>Research on Magnetic Rollers for Recovering Non-Ferrous Metals from End-of-Life Vehicles Employing Machine Learning</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jia, Youdong ; Liu, Jianxiong ; Li, Zhengfang</creator><creatorcontrib>Jia, Youdong ; Liu, Jianxiong ; Li, Zhengfang</creatorcontrib><description>Recovering copper foil and crushed aluminum from end-of-life vehicles (ELVs) is a significant issue in the recycling industry. As a key technology for sorting aluminum, copper, and other non-ferrous metals, eddy current separation (ECS) is efficient in isolating the non-ferrous metals according to their different electrical conductivity and density. However, further research is still needed in the separation of large-size copper foil and crushed aluminum from scrapped vehicles. In this study, support vector regression (SVR) and the sparrow search algorithm (SSA) are exploited for the first time to be used in optimizing the Halbach magnetic roller. Firstly, the numerical simulation results are based on the response surface methodology (RSM). Then, the accuracy of four kernel functions employing SVR is compared to select a kernel function. The sparrow search algorithm (SSA) is proposed to optimize the structural parameters of the Halbach magnetic roller, concentrating on the above-selected kernel function. Meanwhile, the parameters are confirmed. Numerical simulation results indicate that machine learning for magnetic roller optimization is feasible.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su151813451</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Aluminum ; Artificial intelligence ; Efficiency ; Electrical conductivity ; Iron compounds ; Machine learning ; Magnetic fields ; Metals ; Nonferrous metal industry ; Numerical analysis ; Optimization ; Recycling ; Scrap ; Scrap metals ; Simulation ; Simulation methods ; Sustainability</subject><ispartof>Sustainability, 2023-09, Vol.15 (18), p.13451</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-6919e62815956678be11531eab10af9e62155615ba849d03aabeb7b38a54a79c3</citedby><cites>FETCH-LOGICAL-c371t-6919e62815956678be11531eab10af9e62155615ba849d03aabeb7b38a54a79c3</cites><orcidid>0009-0008-1847-8359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jia, Youdong</creatorcontrib><creatorcontrib>Liu, Jianxiong</creatorcontrib><creatorcontrib>Li, Zhengfang</creatorcontrib><title>Research on Magnetic Rollers for Recovering Non-Ferrous Metals from End-of-Life Vehicles Employing Machine Learning</title><title>Sustainability</title><description>Recovering copper foil and crushed aluminum from end-of-life vehicles (ELVs) is a significant issue in the recycling industry. As a key technology for sorting aluminum, copper, and other non-ferrous metals, eddy current separation (ECS) is efficient in isolating the non-ferrous metals according to their different electrical conductivity and density. However, further research is still needed in the separation of large-size copper foil and crushed aluminum from scrapped vehicles. In this study, support vector regression (SVR) and the sparrow search algorithm (SSA) are exploited for the first time to be used in optimizing the Halbach magnetic roller. Firstly, the numerical simulation results are based on the response surface methodology (RSM). Then, the accuracy of four kernel functions employing SVR is compared to select a kernel function. The sparrow search algorithm (SSA) is proposed to optimize the structural parameters of the Halbach magnetic roller, concentrating on the above-selected kernel function. Meanwhile, the parameters are confirmed. Numerical simulation results indicate that machine learning for magnetic roller optimization is feasible.</description><subject>Algorithms</subject><subject>Aluminum</subject><subject>Artificial intelligence</subject><subject>Efficiency</subject><subject>Electrical conductivity</subject><subject>Iron compounds</subject><subject>Machine learning</subject><subject>Magnetic fields</subject><subject>Metals</subject><subject>Nonferrous metal industry</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Recycling</subject><subject>Scrap</subject><subject>Scrap metals</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Sustainability</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkd9rAjEMx4-xwWTzaf9AYU9jnGus7V0fRXQTdAP34_Xo1ZxWzta1d2P-96u4B00eEpLPN4EkSe6A9hiT9Cm0wCEHNuBwkXT6NIMUKKeXJ_l10g1hQ6MxBhJEJwkLDKi8XhNnyVytLDZGk4Wra_SBVM6TBWr3g97YFXl1Np2g964NZI6NqiPh3ZaM7TJ1VTozFZIvXBtdYyDj7a52-4NsrvTaWCSzuMjGwm1yVUUtdv_jTfI5GX-MXtLZ2_N0NJylmmXQpEKCRNHPgUsuRJaXCMAZoCqBqurQAs4F8FLlA7mkTKkSy6xkueIDlUnNbpL749ydd98thqbYuNbbuLLo50KKPI83iFTvSK1UjYWxlWu80tGXuDXaWaxMrA-zLN4WBkJGwcOZIDIN_jYr1YZQTN8X5-zjkdXeheCxKnbebJXfF0CLw9eKk6-xP9ISh_0</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Jia, Youdong</creator><creator>Liu, Jianxiong</creator><creator>Li, Zhengfang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0009-0008-1847-8359</orcidid></search><sort><creationdate>20230901</creationdate><title>Research on Magnetic Rollers for Recovering Non-Ferrous Metals from End-of-Life Vehicles Employing Machine Learning</title><author>Jia, Youdong ; Liu, Jianxiong ; Li, Zhengfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-6919e62815956678be11531eab10af9e62155615ba849d03aabeb7b38a54a79c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Aluminum</topic><topic>Artificial intelligence</topic><topic>Efficiency</topic><topic>Electrical conductivity</topic><topic>Iron compounds</topic><topic>Machine learning</topic><topic>Magnetic fields</topic><topic>Metals</topic><topic>Nonferrous metal industry</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Recycling</topic><topic>Scrap</topic><topic>Scrap metals</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Youdong</creatorcontrib><creatorcontrib>Liu, Jianxiong</creatorcontrib><creatorcontrib>Li, Zhengfang</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Youdong</au><au>Liu, Jianxiong</au><au>Li, Zhengfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Magnetic Rollers for Recovering Non-Ferrous Metals from End-of-Life Vehicles Employing Machine Learning</atitle><jtitle>Sustainability</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>15</volume><issue>18</issue><spage>13451</spage><pages>13451-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Recovering copper foil and crushed aluminum from end-of-life vehicles (ELVs) is a significant issue in the recycling industry. As a key technology for sorting aluminum, copper, and other non-ferrous metals, eddy current separation (ECS) is efficient in isolating the non-ferrous metals according to their different electrical conductivity and density. However, further research is still needed in the separation of large-size copper foil and crushed aluminum from scrapped vehicles. In this study, support vector regression (SVR) and the sparrow search algorithm (SSA) are exploited for the first time to be used in optimizing the Halbach magnetic roller. Firstly, the numerical simulation results are based on the response surface methodology (RSM). Then, the accuracy of four kernel functions employing SVR is compared to select a kernel function. The sparrow search algorithm (SSA) is proposed to optimize the structural parameters of the Halbach magnetic roller, concentrating on the above-selected kernel function. Meanwhile, the parameters are confirmed. Numerical simulation results indicate that machine learning for magnetic roller optimization is feasible.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su151813451</doi><orcidid>https://orcid.org/0009-0008-1847-8359</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2023-09, Vol.15 (18), p.13451
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2869688191
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Aluminum
Artificial intelligence
Efficiency
Electrical conductivity
Iron compounds
Machine learning
Magnetic fields
Metals
Nonferrous metal industry
Numerical analysis
Optimization
Recycling
Scrap
Scrap metals
Simulation
Simulation methods
Sustainability
title Research on Magnetic Rollers for Recovering Non-Ferrous Metals from End-of-Life Vehicles Employing Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A39%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Magnetic%20Rollers%20for%20Recovering%20Non-Ferrous%20Metals%20from%20End-of-Life%20Vehicles%20Employing%20Machine%20Learning&rft.jtitle=Sustainability&rft.au=Jia,%20Youdong&rft.date=2023-09-01&rft.volume=15&rft.issue=18&rft.spage=13451&rft.pages=13451-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su151813451&rft_dat=%3Cgale_proqu%3EA771811469%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869688191&rft_id=info:pmid/&rft_galeid=A771811469&rfr_iscdi=true