Fractional model of brain tumor with chemo-radiotherapy treatment
Fractional calculus is recognized as a technique with many uses, along with studying biological systems. This article frames the mathematical model for the nonlinear fractional differential equations system involving caputo fractional derivative for Chemo-Radiation therapy of a brain tumor. The syst...
Gespeichert in:
Veröffentlicht in: | Journal of applied mathematics & computing 2023-10, Vol.69 (5), p.3793-3818 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3818 |
---|---|
container_issue | 5 |
container_start_page | 3793 |
container_title | Journal of applied mathematics & computing |
container_volume | 69 |
creator | Sujitha, S. Jayakumar, T. Maheskumar, D. |
description | Fractional calculus is recognized as a technique with many uses, along with studying biological systems. This article frames the mathematical model for the nonlinear fractional differential equations system involving caputo fractional derivative for Chemo-Radiation therapy of a brain tumor. The system is investigated for the model’s stability analysis, existence, and uniqueness. The impact of a fractional differential equation on the analysis of the described model is examined by utilizing Caputo Fractional operator. Stability analysis is discussed under three categories: without any therapy, with chemotherapy, and with chemo-radiotherapy treatment. However, numerical simulations have been utilized to investigate the model on fractional order derivative. The graphs have been displayed for the three treatments using various values for the fractional order. This analysis suggests that combination therapy could lead to tremendous success in treating gliomas. |
doi_str_mv | 10.1007/s12190-023-01901-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2869658256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869658256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d10a6544c822942d07d2b47412fdb372c85d8440bf1034a8b535a1173a9f21de3</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKtfwFPAc_Tl325yLMVaoeBFzyG7ydot3U1NUqTf3ugK3jy94TEzDD-EbincU4D6IVFGNRBgnEARlKgzNKOqkoSBkudFS62ILI9LdJXSDqCqNegZWqyibXMfRrvHQ3B-j0OHm2j7EefjECL-7PMWt1s_BBKt60Pe-mgPJ5yjt3nwY75GF53dJ3_ze-fobfX4ulyTzcvT83KxIS2nOhNHwVZSiFYxpgVzUDvWiFpQ1rmG16xV0ikhoOkocGFVI7m0lNbc6o5R5_kc3U29hxg-jj5lswvHWHYnw1SlK6mYrIqLTa42hpSi78wh9oONJ0PBfKMyEypTUJkfVEaVEJ9CqZjHdx__qv9JfQE1EGr7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869658256</pqid></control><display><type>article</type><title>Fractional model of brain tumor with chemo-radiotherapy treatment</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sujitha, S. ; Jayakumar, T. ; Maheskumar, D.</creator><creatorcontrib>Sujitha, S. ; Jayakumar, T. ; Maheskumar, D.</creatorcontrib><description>Fractional calculus is recognized as a technique with many uses, along with studying biological systems. This article frames the mathematical model for the nonlinear fractional differential equations system involving caputo fractional derivative for Chemo-Radiation therapy of a brain tumor. The system is investigated for the model’s stability analysis, existence, and uniqueness. The impact of a fractional differential equation on the analysis of the described model is examined by utilizing Caputo Fractional operator. Stability analysis is discussed under three categories: without any therapy, with chemotherapy, and with chemo-radiotherapy treatment. However, numerical simulations have been utilized to investigate the model on fractional order derivative. The graphs have been displayed for the three treatments using various values for the fractional order. This analysis suggests that combination therapy could lead to tremendous success in treating gliomas.</description><identifier>ISSN: 1598-5865</identifier><identifier>EISSN: 1865-2085</identifier><identifier>DOI: 10.1007/s12190-023-01901-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Brain ; Computational Mathematics and Numerical Analysis ; Derivatives ; Differential equations ; Fractional calculus ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Operators (mathematics) ; Original Research ; Radiation therapy ; Stability analysis ; Theory of Computation ; Tumors</subject><ispartof>Journal of applied mathematics & computing, 2023-10, Vol.69 (5), p.3793-3818</ispartof><rights>The Author(s) under exclusive licence to Korean Society for Informatics and Computational Applied Mathematics 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d10a6544c822942d07d2b47412fdb372c85d8440bf1034a8b535a1173a9f21de3</citedby><cites>FETCH-LOGICAL-c319t-d10a6544c822942d07d2b47412fdb372c85d8440bf1034a8b535a1173a9f21de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12190-023-01901-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12190-023-01901-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Sujitha, S.</creatorcontrib><creatorcontrib>Jayakumar, T.</creatorcontrib><creatorcontrib>Maheskumar, D.</creatorcontrib><title>Fractional model of brain tumor with chemo-radiotherapy treatment</title><title>Journal of applied mathematics & computing</title><addtitle>J. Appl. Math. Comput</addtitle><description>Fractional calculus is recognized as a technique with many uses, along with studying biological systems. This article frames the mathematical model for the nonlinear fractional differential equations system involving caputo fractional derivative for Chemo-Radiation therapy of a brain tumor. The system is investigated for the model’s stability analysis, existence, and uniqueness. The impact of a fractional differential equation on the analysis of the described model is examined by utilizing Caputo Fractional operator. Stability analysis is discussed under three categories: without any therapy, with chemotherapy, and with chemo-radiotherapy treatment. However, numerical simulations have been utilized to investigate the model on fractional order derivative. The graphs have been displayed for the three treatments using various values for the fractional order. This analysis suggests that combination therapy could lead to tremendous success in treating gliomas.</description><subject>Brain</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Derivatives</subject><subject>Differential equations</subject><subject>Fractional calculus</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Operators (mathematics)</subject><subject>Original Research</subject><subject>Radiation therapy</subject><subject>Stability analysis</subject><subject>Theory of Computation</subject><subject>Tumors</subject><issn>1598-5865</issn><issn>1865-2085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKtfwFPAc_Tl325yLMVaoeBFzyG7ydot3U1NUqTf3ugK3jy94TEzDD-EbincU4D6IVFGNRBgnEARlKgzNKOqkoSBkudFS62ILI9LdJXSDqCqNegZWqyibXMfRrvHQ3B-j0OHm2j7EefjECL-7PMWt1s_BBKt60Pe-mgPJ5yjt3nwY75GF53dJ3_ze-fobfX4ulyTzcvT83KxIS2nOhNHwVZSiFYxpgVzUDvWiFpQ1rmG16xV0ikhoOkocGFVI7m0lNbc6o5R5_kc3U29hxg-jj5lswvHWHYnw1SlK6mYrIqLTa42hpSi78wh9oONJ0PBfKMyEypTUJkfVEaVEJ9CqZjHdx__qv9JfQE1EGr7</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Sujitha, S.</creator><creator>Jayakumar, T.</creator><creator>Maheskumar, D.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231001</creationdate><title>Fractional model of brain tumor with chemo-radiotherapy treatment</title><author>Sujitha, S. ; Jayakumar, T. ; Maheskumar, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d10a6544c822942d07d2b47412fdb372c85d8440bf1034a8b535a1173a9f21de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brain</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Derivatives</topic><topic>Differential equations</topic><topic>Fractional calculus</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Operators (mathematics)</topic><topic>Original Research</topic><topic>Radiation therapy</topic><topic>Stability analysis</topic><topic>Theory of Computation</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sujitha, S.</creatorcontrib><creatorcontrib>Jayakumar, T.</creatorcontrib><creatorcontrib>Maheskumar, D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied mathematics & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sujitha, S.</au><au>Jayakumar, T.</au><au>Maheskumar, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional model of brain tumor with chemo-radiotherapy treatment</atitle><jtitle>Journal of applied mathematics & computing</jtitle><stitle>J. Appl. Math. Comput</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>69</volume><issue>5</issue><spage>3793</spage><epage>3818</epage><pages>3793-3818</pages><issn>1598-5865</issn><eissn>1865-2085</eissn><abstract>Fractional calculus is recognized as a technique with many uses, along with studying biological systems. This article frames the mathematical model for the nonlinear fractional differential equations system involving caputo fractional derivative for Chemo-Radiation therapy of a brain tumor. The system is investigated for the model’s stability analysis, existence, and uniqueness. The impact of a fractional differential equation on the analysis of the described model is examined by utilizing Caputo Fractional operator. Stability analysis is discussed under three categories: without any therapy, with chemotherapy, and with chemo-radiotherapy treatment. However, numerical simulations have been utilized to investigate the model on fractional order derivative. The graphs have been displayed for the three treatments using various values for the fractional order. This analysis suggests that combination therapy could lead to tremendous success in treating gliomas.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12190-023-01901-8</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1598-5865 |
ispartof | Journal of applied mathematics & computing, 2023-10, Vol.69 (5), p.3793-3818 |
issn | 1598-5865 1865-2085 |
language | eng |
recordid | cdi_proquest_journals_2869658256 |
source | SpringerLink Journals - AutoHoldings |
subjects | Brain Computational Mathematics and Numerical Analysis Derivatives Differential equations Fractional calculus Mathematical analysis Mathematical and Computational Engineering Mathematical models Mathematics Mathematics and Statistics Mathematics of Computing Operators (mathematics) Original Research Radiation therapy Stability analysis Theory of Computation Tumors |
title | Fractional model of brain tumor with chemo-radiotherapy treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20model%20of%20brain%20tumor%20with%20chemo-radiotherapy%20treatment&rft.jtitle=Journal%20of%20applied%20mathematics%20&%20computing&rft.au=Sujitha,%20S.&rft.date=2023-10-01&rft.volume=69&rft.issue=5&rft.spage=3793&rft.epage=3818&rft.pages=3793-3818&rft.issn=1598-5865&rft.eissn=1865-2085&rft_id=info:doi/10.1007/s12190-023-01901-8&rft_dat=%3Cproquest_cross%3E2869658256%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869658256&rft_id=info:pmid/&rfr_iscdi=true |