MDSS-based iteration method for weakly nonlinear systems with complex coefficient matrices

In this paper,we devote to improve an effective iterative method for solving weakly nonlinear systems with large sparse complex symmetric Jacobian matrix. Employing the Anderson mixing to speed up the convergence of double-step scale splitting (DSS) iteration, we establish a modified DSS (MDSS) iter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics & computing 2023-10, Vol.69 (5), p.3579-3600
Hauptverfasser: Xiao, Yao, Wu, Qingbiao, Zhang, Yuanyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3600
container_issue 5
container_start_page 3579
container_title Journal of applied mathematics & computing
container_volume 69
creator Xiao, Yao
Wu, Qingbiao
Zhang, Yuanyuan
description In this paper,we devote to improve an effective iterative method for solving weakly nonlinear systems with large sparse complex symmetric Jacobian matrix. Employing the Anderson mixing to speed up the convergence of double-step scale splitting (DSS) iteration, we establish a modified DSS (MDSS) iteration method for solving linear system with complex symmetric matrix. We propose the Picard-MDSS method based on the separability of linear and nonlinear terms by combining modified DSS (MDSS) methods of linear systems. We explore convergence theorems for the MDSS and Picard-MDSS methods under proper conditions. Furthermore, we conclude that our new methods are more efficient in comparison to several known methods through numerical experiments. The numerical results show the superiority of our new methods in CPU time and iteration steps.
doi_str_mv 10.1007/s12190-023-01894-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2869657061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869657061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-6f499b1d22dba6e9417372ba2be0e384ec40da9afe352023a6dd89379fa8925f3</originalsourceid><addsrcrecordid>eNp9ULtOwzAUtRBIlMIPMFliNthO4tgjKk-piKGwsFhOck1dkrjYRqV_j6FIbEzn6uo8dA5Cp4yeM0rri8g4U5RQXhDKpCpJuYcmTIqKcCqr_XxXSpIqPw7RUYwrSkWtqJqgl4erxYI0JkKHXYJgkvMjHiAtfYetD3gD5q3f4tGPvRvBBBy3McEQ8calJW79sO7hMyNY61oHY8KDScG1EI_RgTV9hJNfnKLnm-un2R2ZP97ezy7npOU1TUTYUqmGdZx3jRGgSlYXNW8Mb4BCIUtoS9oZZSwUFc8Fjeg6qYpaWSMVr2wxRWc733Xw7x8Qk175jzDmSM2lUKKqqWCZxXesNvgYA1i9Dm4wYasZ1d8b6t2GOkfonw11mUXFThQzeXyF8Gf9j-oLNmZ1gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869657061</pqid></control><display><type>article</type><title>MDSS-based iteration method for weakly nonlinear systems with complex coefficient matrices</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xiao, Yao ; Wu, Qingbiao ; Zhang, Yuanyuan</creator><creatorcontrib>Xiao, Yao ; Wu, Qingbiao ; Zhang, Yuanyuan</creatorcontrib><description>In this paper,we devote to improve an effective iterative method for solving weakly nonlinear systems with large sparse complex symmetric Jacobian matrix. Employing the Anderson mixing to speed up the convergence of double-step scale splitting (DSS) iteration, we establish a modified DSS (MDSS) iteration method for solving linear system with complex symmetric matrix. We propose the Picard-MDSS method based on the separability of linear and nonlinear terms by combining modified DSS (MDSS) methods of linear systems. We explore convergence theorems for the MDSS and Picard-MDSS methods under proper conditions. Furthermore, we conclude that our new methods are more efficient in comparison to several known methods through numerical experiments. The numerical results show the superiority of our new methods in CPU time and iteration steps.</description><identifier>ISSN: 1598-5865</identifier><identifier>EISSN: 1865-2085</identifier><identifier>DOI: 10.1007/s12190-023-01894-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational Mathematics and Numerical Analysis ; Convergence ; Iterative methods ; Jacobi matrix method ; Jacobian matrix ; Linear systems ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Nonlinear systems ; Numerical methods ; Original Research ; System effectiveness ; Theory of Computation</subject><ispartof>Journal of applied mathematics &amp; computing, 2023-10, Vol.69 (5), p.3579-3600</ispartof><rights>The Author(s) under exclusive licence to Korean Society for Informatics and Computational Applied Mathematics 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-6f499b1d22dba6e9417372ba2be0e384ec40da9afe352023a6dd89379fa8925f3</cites><orcidid>0000-0003-2706-6264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12190-023-01894-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12190-023-01894-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xiao, Yao</creatorcontrib><creatorcontrib>Wu, Qingbiao</creatorcontrib><creatorcontrib>Zhang, Yuanyuan</creatorcontrib><title>MDSS-based iteration method for weakly nonlinear systems with complex coefficient matrices</title><title>Journal of applied mathematics &amp; computing</title><addtitle>J. Appl. Math. Comput</addtitle><description>In this paper,we devote to improve an effective iterative method for solving weakly nonlinear systems with large sparse complex symmetric Jacobian matrix. Employing the Anderson mixing to speed up the convergence of double-step scale splitting (DSS) iteration, we establish a modified DSS (MDSS) iteration method for solving linear system with complex symmetric matrix. We propose the Picard-MDSS method based on the separability of linear and nonlinear terms by combining modified DSS (MDSS) methods of linear systems. We explore convergence theorems for the MDSS and Picard-MDSS methods under proper conditions. Furthermore, we conclude that our new methods are more efficient in comparison to several known methods through numerical experiments. The numerical results show the superiority of our new methods in CPU time and iteration steps.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convergence</subject><subject>Iterative methods</subject><subject>Jacobi matrix method</subject><subject>Jacobian matrix</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Nonlinear systems</subject><subject>Numerical methods</subject><subject>Original Research</subject><subject>System effectiveness</subject><subject>Theory of Computation</subject><issn>1598-5865</issn><issn>1865-2085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9ULtOwzAUtRBIlMIPMFliNthO4tgjKk-piKGwsFhOck1dkrjYRqV_j6FIbEzn6uo8dA5Cp4yeM0rri8g4U5RQXhDKpCpJuYcmTIqKcCqr_XxXSpIqPw7RUYwrSkWtqJqgl4erxYI0JkKHXYJgkvMjHiAtfYetD3gD5q3f4tGPvRvBBBy3McEQ8calJW79sO7hMyNY61oHY8KDScG1EI_RgTV9hJNfnKLnm-un2R2ZP97ezy7npOU1TUTYUqmGdZx3jRGgSlYXNW8Mb4BCIUtoS9oZZSwUFc8Fjeg6qYpaWSMVr2wxRWc733Xw7x8Qk175jzDmSM2lUKKqqWCZxXesNvgYA1i9Dm4wYasZ1d8b6t2GOkfonw11mUXFThQzeXyF8Gf9j-oLNmZ1gQ</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Xiao, Yao</creator><creator>Wu, Qingbiao</creator><creator>Zhang, Yuanyuan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2706-6264</orcidid></search><sort><creationdate>20231001</creationdate><title>MDSS-based iteration method for weakly nonlinear systems with complex coefficient matrices</title><author>Xiao, Yao ; Wu, Qingbiao ; Zhang, Yuanyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-6f499b1d22dba6e9417372ba2be0e384ec40da9afe352023a6dd89379fa8925f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convergence</topic><topic>Iterative methods</topic><topic>Jacobi matrix method</topic><topic>Jacobian matrix</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Nonlinear systems</topic><topic>Numerical methods</topic><topic>Original Research</topic><topic>System effectiveness</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Yao</creatorcontrib><creatorcontrib>Wu, Qingbiao</creatorcontrib><creatorcontrib>Zhang, Yuanyuan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied mathematics &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Yao</au><au>Wu, Qingbiao</au><au>Zhang, Yuanyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MDSS-based iteration method for weakly nonlinear systems with complex coefficient matrices</atitle><jtitle>Journal of applied mathematics &amp; computing</jtitle><stitle>J. Appl. Math. Comput</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>69</volume><issue>5</issue><spage>3579</spage><epage>3600</epage><pages>3579-3600</pages><issn>1598-5865</issn><eissn>1865-2085</eissn><abstract>In this paper,we devote to improve an effective iterative method for solving weakly nonlinear systems with large sparse complex symmetric Jacobian matrix. Employing the Anderson mixing to speed up the convergence of double-step scale splitting (DSS) iteration, we establish a modified DSS (MDSS) iteration method for solving linear system with complex symmetric matrix. We propose the Picard-MDSS method based on the separability of linear and nonlinear terms by combining modified DSS (MDSS) methods of linear systems. We explore convergence theorems for the MDSS and Picard-MDSS methods under proper conditions. Furthermore, we conclude that our new methods are more efficient in comparison to several known methods through numerical experiments. The numerical results show the superiority of our new methods in CPU time and iteration steps.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12190-023-01894-4</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-2706-6264</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1598-5865
ispartof Journal of applied mathematics & computing, 2023-10, Vol.69 (5), p.3579-3600
issn 1598-5865
1865-2085
language eng
recordid cdi_proquest_journals_2869657061
source SpringerLink Journals - AutoHoldings
subjects Computational Mathematics and Numerical Analysis
Convergence
Iterative methods
Jacobi matrix method
Jacobian matrix
Linear systems
Mathematical analysis
Mathematical and Computational Engineering
Mathematics
Mathematics and Statistics
Mathematics of Computing
Nonlinear systems
Numerical methods
Original Research
System effectiveness
Theory of Computation
title MDSS-based iteration method for weakly nonlinear systems with complex coefficient matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A25%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MDSS-based%20iteration%20method%20for%20weakly%20nonlinear%20systems%20with%20complex%20coefficient%20matrices&rft.jtitle=Journal%20of%20applied%20mathematics%20&%20computing&rft.au=Xiao,%20Yao&rft.date=2023-10-01&rft.volume=69&rft.issue=5&rft.spage=3579&rft.epage=3600&rft.pages=3579-3600&rft.issn=1598-5865&rft.eissn=1865-2085&rft_id=info:doi/10.1007/s12190-023-01894-4&rft_dat=%3Cproquest_cross%3E2869657061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869657061&rft_id=info:pmid/&rfr_iscdi=true