Large deformation GNARLYX hydrocode simulations of the drop weight impact experiment

We aim for new perspectives on the complex underlying mechanisms that lead to the onset of chemical reactions in drop weight impact experiments. Large deformation and heat generation in the sample critically depend on the material properties although the exact thermomechanical conditions that lead t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cheng, Roseanne M., Zecevic, Milovan, Moore, Jeremiah D., Cawkwell, Marc J., Manner, Virginia W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2844
creator Cheng, Roseanne M.
Zecevic, Milovan
Moore, Jeremiah D.
Cawkwell, Marc J.
Manner, Virginia W.
description We aim for new perspectives on the complex underlying mechanisms that lead to the onset of chemical reactions in drop weight impact experiments. Large deformation and heat generation in the sample critically depend on the material properties although the exact thermomechanical conditions that lead to a “Go” or “No-Go” are unclear. We consider heat generation by the fast lateral flow of molten explosives in the drop weight impact test. An analytic model for Poiseuille flow in liquid pentaery-thritol tetranitrate (PETN), using a temperature-dependent viscosity and constant thermal conductivity derived from molecular dynamics simulations, shows that flow velocities approximately 100ms−1 give rise to temperatures around 700 K. We show, with LANL GNARLYX compressible hydrodynamic simulations, that Poiseuille flow within a planar geometry using both temperature-dependent viscosity and thermal conductivity yield similar values for the temperature change in liquid PETN at the flow velocities observed experimentally just prior to ignition.
doi_str_mv 10.1063/12.0020407
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2869340350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869340350</sourcerecordid><originalsourceid>FETCH-LOGICAL-p979-d64ac0c1f8957da80987868bfa1ae4702133fafdf76a68549e9bb6475fa0ff9c3</originalsourceid><addsrcrecordid>eNotkM1OwzAQhC0EEqVw4QkscUQp69jxz7GqoCBFIKEcyslyE7tN1dTBdgV9e0Lb0x7mm9ndQeiewIQAp08knwDkwEBcoBEpCpIJTvglGgEoluWMLq7RTYybAVJCyBGqShNWFjfW-dCZ1Podnr9PP8uvBV4fmuBr31gc226_PYoRe4fTejAE3-Mf267WCbddb-qE7W9vQ9vZXbpFV85so707zzGqXp6r2WtWfszfZtMy65VQWcOZqaEmTqpCNEaCkkJyuXSGGMsE5IRSZ1zjBDdcFkxZtVxyJgpnwDlV0zF6OMX2wX_vbUx64_dhN2zUueSKMqAFDNTjiYp1m45P6H4404SDJqD_W9Mk1-fW6B9fgF8X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2869340350</pqid></control><display><type>conference_proceeding</type><title>Large deformation GNARLYX hydrocode simulations of the drop weight impact experiment</title><source>AIP Journals Complete</source><creator>Cheng, Roseanne M. ; Zecevic, Milovan ; Moore, Jeremiah D. ; Cawkwell, Marc J. ; Manner, Virginia W.</creator><contributor>Germann, Timothy C. ; Gleason, Arianna E. ; Armstrong, Michael R. ; Lane, J. Matthew D. ; Jordan, Jennifer L.</contributor><creatorcontrib>Cheng, Roseanne M. ; Zecevic, Milovan ; Moore, Jeremiah D. ; Cawkwell, Marc J. ; Manner, Virginia W. ; Germann, Timothy C. ; Gleason, Arianna E. ; Armstrong, Michael R. ; Lane, J. Matthew D. ; Jordan, Jennifer L.</creatorcontrib><description>We aim for new perspectives on the complex underlying mechanisms that lead to the onset of chemical reactions in drop weight impact experiments. Large deformation and heat generation in the sample critically depend on the material properties although the exact thermomechanical conditions that lead to a “Go” or “No-Go” are unclear. We consider heat generation by the fast lateral flow of molten explosives in the drop weight impact test. An analytic model for Poiseuille flow in liquid pentaery-thritol tetranitrate (PETN), using a temperature-dependent viscosity and constant thermal conductivity derived from molecular dynamics simulations, shows that flow velocities approximately 100ms−1 give rise to temperatures around 700 K. We show, with LANL GNARLYX compressible hydrodynamic simulations, that Poiseuille flow within a planar geometry using both temperature-dependent viscosity and thermal conductivity yield similar values for the temperature change in liquid PETN at the flow velocities observed experimentally just prior to ignition.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/12.0020407</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Chemical reactions ; Compressibility ; Deformation ; Explosive impact tests ; Flow velocity ; Heat generation ; Heat transfer ; Laminar flow ; Material properties ; Molecular dynamics ; PETN ; Simulation ; Temperature dependence ; Thermal conductivity ; Viscosity</subject><ispartof>AIP conference proceedings, 2023, Vol.2844 (1)</ispartof><rights>AIP Publishing LLC</rights><rights>2023 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/12.0020407$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Germann, Timothy C.</contributor><contributor>Gleason, Arianna E.</contributor><contributor>Armstrong, Michael R.</contributor><contributor>Lane, J. Matthew D.</contributor><contributor>Jordan, Jennifer L.</contributor><creatorcontrib>Cheng, Roseanne M.</creatorcontrib><creatorcontrib>Zecevic, Milovan</creatorcontrib><creatorcontrib>Moore, Jeremiah D.</creatorcontrib><creatorcontrib>Cawkwell, Marc J.</creatorcontrib><creatorcontrib>Manner, Virginia W.</creatorcontrib><title>Large deformation GNARLYX hydrocode simulations of the drop weight impact experiment</title><title>AIP conference proceedings</title><description>We aim for new perspectives on the complex underlying mechanisms that lead to the onset of chemical reactions in drop weight impact experiments. Large deformation and heat generation in the sample critically depend on the material properties although the exact thermomechanical conditions that lead to a “Go” or “No-Go” are unclear. We consider heat generation by the fast lateral flow of molten explosives in the drop weight impact test. An analytic model for Poiseuille flow in liquid pentaery-thritol tetranitrate (PETN), using a temperature-dependent viscosity and constant thermal conductivity derived from molecular dynamics simulations, shows that flow velocities approximately 100ms−1 give rise to temperatures around 700 K. We show, with LANL GNARLYX compressible hydrodynamic simulations, that Poiseuille flow within a planar geometry using both temperature-dependent viscosity and thermal conductivity yield similar values for the temperature change in liquid PETN at the flow velocities observed experimentally just prior to ignition.</description><subject>Chemical reactions</subject><subject>Compressibility</subject><subject>Deformation</subject><subject>Explosive impact tests</subject><subject>Flow velocity</subject><subject>Heat generation</subject><subject>Heat transfer</subject><subject>Laminar flow</subject><subject>Material properties</subject><subject>Molecular dynamics</subject><subject>PETN</subject><subject>Simulation</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><subject>Viscosity</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM1OwzAQhC0EEqVw4QkscUQp69jxz7GqoCBFIKEcyslyE7tN1dTBdgV9e0Lb0x7mm9ndQeiewIQAp08knwDkwEBcoBEpCpIJTvglGgEoluWMLq7RTYybAVJCyBGqShNWFjfW-dCZ1Podnr9PP8uvBV4fmuBr31gc226_PYoRe4fTejAE3-Mf267WCbddb-qE7W9vQ9vZXbpFV85so707zzGqXp6r2WtWfszfZtMy65VQWcOZqaEmTqpCNEaCkkJyuXSGGMsE5IRSZ1zjBDdcFkxZtVxyJgpnwDlV0zF6OMX2wX_vbUx64_dhN2zUueSKMqAFDNTjiYp1m45P6H4404SDJqD_W9Mk1-fW6B9fgF8X</recordid><startdate>20230926</startdate><enddate>20230926</enddate><creator>Cheng, Roseanne M.</creator><creator>Zecevic, Milovan</creator><creator>Moore, Jeremiah D.</creator><creator>Cawkwell, Marc J.</creator><creator>Manner, Virginia W.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230926</creationdate><title>Large deformation GNARLYX hydrocode simulations of the drop weight impact experiment</title><author>Cheng, Roseanne M. ; Zecevic, Milovan ; Moore, Jeremiah D. ; Cawkwell, Marc J. ; Manner, Virginia W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p979-d64ac0c1f8957da80987868bfa1ae4702133fafdf76a68549e9bb6475fa0ff9c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical reactions</topic><topic>Compressibility</topic><topic>Deformation</topic><topic>Explosive impact tests</topic><topic>Flow velocity</topic><topic>Heat generation</topic><topic>Heat transfer</topic><topic>Laminar flow</topic><topic>Material properties</topic><topic>Molecular dynamics</topic><topic>PETN</topic><topic>Simulation</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Roseanne M.</creatorcontrib><creatorcontrib>Zecevic, Milovan</creatorcontrib><creatorcontrib>Moore, Jeremiah D.</creatorcontrib><creatorcontrib>Cawkwell, Marc J.</creatorcontrib><creatorcontrib>Manner, Virginia W.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Roseanne M.</au><au>Zecevic, Milovan</au><au>Moore, Jeremiah D.</au><au>Cawkwell, Marc J.</au><au>Manner, Virginia W.</au><au>Germann, Timothy C.</au><au>Gleason, Arianna E.</au><au>Armstrong, Michael R.</au><au>Lane, J. Matthew D.</au><au>Jordan, Jennifer L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Large deformation GNARLYX hydrocode simulations of the drop weight impact experiment</atitle><btitle>AIP conference proceedings</btitle><date>2023-09-26</date><risdate>2023</risdate><volume>2844</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We aim for new perspectives on the complex underlying mechanisms that lead to the onset of chemical reactions in drop weight impact experiments. Large deformation and heat generation in the sample critically depend on the material properties although the exact thermomechanical conditions that lead to a “Go” or “No-Go” are unclear. We consider heat generation by the fast lateral flow of molten explosives in the drop weight impact test. An analytic model for Poiseuille flow in liquid pentaery-thritol tetranitrate (PETN), using a temperature-dependent viscosity and constant thermal conductivity derived from molecular dynamics simulations, shows that flow velocities approximately 100ms−1 give rise to temperatures around 700 K. We show, with LANL GNARLYX compressible hydrodynamic simulations, that Poiseuille flow within a planar geometry using both temperature-dependent viscosity and thermal conductivity yield similar values for the temperature change in liquid PETN at the flow velocities observed experimentally just prior to ignition.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/12.0020407</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2844 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2869340350
source AIP Journals Complete
subjects Chemical reactions
Compressibility
Deformation
Explosive impact tests
Flow velocity
Heat generation
Heat transfer
Laminar flow
Material properties
Molecular dynamics
PETN
Simulation
Temperature dependence
Thermal conductivity
Viscosity
title Large deformation GNARLYX hydrocode simulations of the drop weight impact experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Large%20deformation%20GNARLYX%20hydrocode%20simulations%20of%20the%20drop%20weight%20impact%20experiment&rft.btitle=AIP%20conference%20proceedings&rft.au=Cheng,%20Roseanne%20M.&rft.date=2023-09-26&rft.volume=2844&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/12.0020407&rft_dat=%3Cproquest_scita%3E2869340350%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869340350&rft_id=info:pmid/&rfr_iscdi=true