Large deformation GNARLYX hydrocode simulations of the drop weight impact experiment
We aim for new perspectives on the complex underlying mechanisms that lead to the onset of chemical reactions in drop weight impact experiments. Large deformation and heat generation in the sample critically depend on the material properties although the exact thermomechanical conditions that lead t...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2844 |
creator | Cheng, Roseanne M. Zecevic, Milovan Moore, Jeremiah D. Cawkwell, Marc J. Manner, Virginia W. |
description | We aim for new perspectives on the complex underlying mechanisms that lead to the onset of chemical reactions in drop weight impact experiments. Large deformation and heat generation in the sample critically depend on the material properties although the exact thermomechanical conditions that lead to a “Go” or “No-Go” are unclear. We consider heat generation by the fast lateral flow of molten explosives in the drop weight impact test. An analytic model for Poiseuille flow in liquid pentaery-thritol tetranitrate (PETN), using a temperature-dependent viscosity and constant thermal conductivity derived from molecular dynamics simulations, shows that flow velocities approximately 100ms−1 give rise to temperatures around 700 K. We show, with LANL GNARLYX compressible hydrodynamic simulations, that Poiseuille flow within a planar geometry using both temperature-dependent viscosity and thermal conductivity yield similar values for the temperature change in liquid PETN at the flow velocities observed experimentally just prior to ignition. |
doi_str_mv | 10.1063/12.0020407 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2869340350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869340350</sourcerecordid><originalsourceid>FETCH-LOGICAL-p979-d64ac0c1f8957da80987868bfa1ae4702133fafdf76a68549e9bb6475fa0ff9c3</originalsourceid><addsrcrecordid>eNotkM1OwzAQhC0EEqVw4QkscUQp69jxz7GqoCBFIKEcyslyE7tN1dTBdgV9e0Lb0x7mm9ndQeiewIQAp08knwDkwEBcoBEpCpIJTvglGgEoluWMLq7RTYybAVJCyBGqShNWFjfW-dCZ1Podnr9PP8uvBV4fmuBr31gc226_PYoRe4fTejAE3-Mf267WCbddb-qE7W9vQ9vZXbpFV85so707zzGqXp6r2WtWfszfZtMy65VQWcOZqaEmTqpCNEaCkkJyuXSGGMsE5IRSZ1zjBDdcFkxZtVxyJgpnwDlV0zF6OMX2wX_vbUx64_dhN2zUueSKMqAFDNTjiYp1m45P6H4404SDJqD_W9Mk1-fW6B9fgF8X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2869340350</pqid></control><display><type>conference_proceeding</type><title>Large deformation GNARLYX hydrocode simulations of the drop weight impact experiment</title><source>AIP Journals Complete</source><creator>Cheng, Roseanne M. ; Zecevic, Milovan ; Moore, Jeremiah D. ; Cawkwell, Marc J. ; Manner, Virginia W.</creator><contributor>Germann, Timothy C. ; Gleason, Arianna E. ; Armstrong, Michael R. ; Lane, J. Matthew D. ; Jordan, Jennifer L.</contributor><creatorcontrib>Cheng, Roseanne M. ; Zecevic, Milovan ; Moore, Jeremiah D. ; Cawkwell, Marc J. ; Manner, Virginia W. ; Germann, Timothy C. ; Gleason, Arianna E. ; Armstrong, Michael R. ; Lane, J. Matthew D. ; Jordan, Jennifer L.</creatorcontrib><description>We aim for new perspectives on the complex underlying mechanisms that lead to the onset of chemical reactions in drop weight impact experiments. Large deformation and heat generation in the sample critically depend on the material properties although the exact thermomechanical conditions that lead to a “Go” or “No-Go” are unclear. We consider heat generation by the fast lateral flow of molten explosives in the drop weight impact test. An analytic model for Poiseuille flow in liquid pentaery-thritol tetranitrate (PETN), using a temperature-dependent viscosity and constant thermal conductivity derived from molecular dynamics simulations, shows that flow velocities approximately 100ms−1 give rise to temperatures around 700 K. We show, with LANL GNARLYX compressible hydrodynamic simulations, that Poiseuille flow within a planar geometry using both temperature-dependent viscosity and thermal conductivity yield similar values for the temperature change in liquid PETN at the flow velocities observed experimentally just prior to ignition.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/12.0020407</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Chemical reactions ; Compressibility ; Deformation ; Explosive impact tests ; Flow velocity ; Heat generation ; Heat transfer ; Laminar flow ; Material properties ; Molecular dynamics ; PETN ; Simulation ; Temperature dependence ; Thermal conductivity ; Viscosity</subject><ispartof>AIP conference proceedings, 2023, Vol.2844 (1)</ispartof><rights>AIP Publishing LLC</rights><rights>2023 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/12.0020407$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Germann, Timothy C.</contributor><contributor>Gleason, Arianna E.</contributor><contributor>Armstrong, Michael R.</contributor><contributor>Lane, J. Matthew D.</contributor><contributor>Jordan, Jennifer L.</contributor><creatorcontrib>Cheng, Roseanne M.</creatorcontrib><creatorcontrib>Zecevic, Milovan</creatorcontrib><creatorcontrib>Moore, Jeremiah D.</creatorcontrib><creatorcontrib>Cawkwell, Marc J.</creatorcontrib><creatorcontrib>Manner, Virginia W.</creatorcontrib><title>Large deformation GNARLYX hydrocode simulations of the drop weight impact experiment</title><title>AIP conference proceedings</title><description>We aim for new perspectives on the complex underlying mechanisms that lead to the onset of chemical reactions in drop weight impact experiments. Large deformation and heat generation in the sample critically depend on the material properties although the exact thermomechanical conditions that lead to a “Go” or “No-Go” are unclear. We consider heat generation by the fast lateral flow of molten explosives in the drop weight impact test. An analytic model for Poiseuille flow in liquid pentaery-thritol tetranitrate (PETN), using a temperature-dependent viscosity and constant thermal conductivity derived from molecular dynamics simulations, shows that flow velocities approximately 100ms−1 give rise to temperatures around 700 K. We show, with LANL GNARLYX compressible hydrodynamic simulations, that Poiseuille flow within a planar geometry using both temperature-dependent viscosity and thermal conductivity yield similar values for the temperature change in liquid PETN at the flow velocities observed experimentally just prior to ignition.</description><subject>Chemical reactions</subject><subject>Compressibility</subject><subject>Deformation</subject><subject>Explosive impact tests</subject><subject>Flow velocity</subject><subject>Heat generation</subject><subject>Heat transfer</subject><subject>Laminar flow</subject><subject>Material properties</subject><subject>Molecular dynamics</subject><subject>PETN</subject><subject>Simulation</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><subject>Viscosity</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM1OwzAQhC0EEqVw4QkscUQp69jxz7GqoCBFIKEcyslyE7tN1dTBdgV9e0Lb0x7mm9ndQeiewIQAp08knwDkwEBcoBEpCpIJTvglGgEoluWMLq7RTYybAVJCyBGqShNWFjfW-dCZ1Podnr9PP8uvBV4fmuBr31gc226_PYoRe4fTejAE3-Mf267WCbddb-qE7W9vQ9vZXbpFV85so707zzGqXp6r2WtWfszfZtMy65VQWcOZqaEmTqpCNEaCkkJyuXSGGMsE5IRSZ1zjBDdcFkxZtVxyJgpnwDlV0zF6OMX2wX_vbUx64_dhN2zUueSKMqAFDNTjiYp1m45P6H4404SDJqD_W9Mk1-fW6B9fgF8X</recordid><startdate>20230926</startdate><enddate>20230926</enddate><creator>Cheng, Roseanne M.</creator><creator>Zecevic, Milovan</creator><creator>Moore, Jeremiah D.</creator><creator>Cawkwell, Marc J.</creator><creator>Manner, Virginia W.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230926</creationdate><title>Large deformation GNARLYX hydrocode simulations of the drop weight impact experiment</title><author>Cheng, Roseanne M. ; Zecevic, Milovan ; Moore, Jeremiah D. ; Cawkwell, Marc J. ; Manner, Virginia W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p979-d64ac0c1f8957da80987868bfa1ae4702133fafdf76a68549e9bb6475fa0ff9c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical reactions</topic><topic>Compressibility</topic><topic>Deformation</topic><topic>Explosive impact tests</topic><topic>Flow velocity</topic><topic>Heat generation</topic><topic>Heat transfer</topic><topic>Laminar flow</topic><topic>Material properties</topic><topic>Molecular dynamics</topic><topic>PETN</topic><topic>Simulation</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Roseanne M.</creatorcontrib><creatorcontrib>Zecevic, Milovan</creatorcontrib><creatorcontrib>Moore, Jeremiah D.</creatorcontrib><creatorcontrib>Cawkwell, Marc J.</creatorcontrib><creatorcontrib>Manner, Virginia W.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Roseanne M.</au><au>Zecevic, Milovan</au><au>Moore, Jeremiah D.</au><au>Cawkwell, Marc J.</au><au>Manner, Virginia W.</au><au>Germann, Timothy C.</au><au>Gleason, Arianna E.</au><au>Armstrong, Michael R.</au><au>Lane, J. Matthew D.</au><au>Jordan, Jennifer L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Large deformation GNARLYX hydrocode simulations of the drop weight impact experiment</atitle><btitle>AIP conference proceedings</btitle><date>2023-09-26</date><risdate>2023</risdate><volume>2844</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We aim for new perspectives on the complex underlying mechanisms that lead to the onset of chemical reactions in drop weight impact experiments. Large deformation and heat generation in the sample critically depend on the material properties although the exact thermomechanical conditions that lead to a “Go” or “No-Go” are unclear. We consider heat generation by the fast lateral flow of molten explosives in the drop weight impact test. An analytic model for Poiseuille flow in liquid pentaery-thritol tetranitrate (PETN), using a temperature-dependent viscosity and constant thermal conductivity derived from molecular dynamics simulations, shows that flow velocities approximately 100ms−1 give rise to temperatures around 700 K. We show, with LANL GNARLYX compressible hydrodynamic simulations, that Poiseuille flow within a planar geometry using both temperature-dependent viscosity and thermal conductivity yield similar values for the temperature change in liquid PETN at the flow velocities observed experimentally just prior to ignition.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/12.0020407</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2844 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2869340350 |
source | AIP Journals Complete |
subjects | Chemical reactions Compressibility Deformation Explosive impact tests Flow velocity Heat generation Heat transfer Laminar flow Material properties Molecular dynamics PETN Simulation Temperature dependence Thermal conductivity Viscosity |
title | Large deformation GNARLYX hydrocode simulations of the drop weight impact experiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Large%20deformation%20GNARLYX%20hydrocode%20simulations%20of%20the%20drop%20weight%20impact%20experiment&rft.btitle=AIP%20conference%20proceedings&rft.au=Cheng,%20Roseanne%20M.&rft.date=2023-09-26&rft.volume=2844&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/12.0020407&rft_dat=%3Cproquest_scita%3E2869340350%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869340350&rft_id=info:pmid/&rfr_iscdi=true |