Cryogenic design of a superconducting magnet with a copper cable-in-conduit conductor filled with static superfluid helium

In the field of dark matter research, the MAgnetized Disk and Mirror Axion eXperiment (MADMAX) aims for the direct search of axions in a mass range around 100μeV. To have enough sensitivity on this range a dipole composed of 18 coils must reach a figure of merit of 100 T \mathbf {^{2}} m\mathbf {^{2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2023-10, Vol.33 (7), p.1-12
Hauptverfasser: Pontarollo, T., Maksoud, W. Abdel, Berriaud, C., Correia-Machado, R., Donga, T., Drouen, Y., Duranona, U., Godon, P., Godon, R., Jurie, S., Lorin, C., Scola, L., Segrestan, L., Solenne, N., Stacchi, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 7
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 33
creator Pontarollo, T.
Maksoud, W. Abdel
Berriaud, C.
Correia-Machado, R.
Donga, T.
Drouen, Y.
Duranona, U.
Godon, P.
Godon, R.
Jurie, S.
Lorin, C.
Scola, L.
Segrestan, L.
Solenne, N.
Stacchi, F.
description In the field of dark matter research, the MAgnetized Disk and Mirror Axion eXperiment (MADMAX) aims for the direct search of axions in a mass range around 100μeV. To have enough sensitivity on this range a dipole composed of 18 coils must reach a figure of merit of 100 T \mathbf {^{2}} m\mathbf {^{2}}. For this purpose, the use of a cable-in-conduit conductor (CICC) with a copper profile filled with static superfluid helium is under investigation. In order to prove the reliability of such a conductor in this magnet design as well as characterizing the quench propagation, a magnet solenoid mockup is tested within the JT60SA Cold Test Facility (CTF). To reproduce the thermal configuration of a MADMAX coil, the solenoid mockup is cooled down at 1.8 K directly through the void section of the CICC by pressurised superfluid helium and the mandrel, by conduction, without being immersed in a helium bath. The long distance to the heat exchanger coupled with the narrow helium section in the CICC limits the Gorter-Mellink heat transport, thus the cool down efficiency and heat losses must be tackled. This paper describes the thermal design of the experimental facility, the explanation of a thermal model for superfluid helium cool down and operation and the first experimental results.
doi_str_mv 10.1109/TASC.2023.3309152
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2869339422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10232872</ieee_id><sourcerecordid>2869339422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-40ca602d7fc581bdced23a02a49e82f6ea29a23d2e0192961556c7fb968948303</originalsourceid><addsrcrecordid>eNpNkM9LwzAUx4MoOKd_gOAh4LkzeWm65DiGv2DgwXkuWfraZXRtTVpk_vVm6w6e3oPvj8f7EHLP2Yxzpp_Wi8_lDBiImRBMcwkXZMKlVAlILi_jziRPFIC4Jjch7BjjqUrlhPwu_aGtsHGWFhhc1dC2pIaGoUNv26YYbO-aiu5N1WBPf1y_japtuyhTazY1Jq5JTkbX03Og9bR0dY3F6A-96WP9qbKsB1fQLdZu2N-Sq9LUAe_Oc0q-Xp7Xy7dk9fH6vlysEgs67ZOUWZMxKOallYpvCosFCMPApBoVlBka0AZEAci4Bp3FrzM7Lzc6UzpVgokpeRx7O99-Dxj6fNcOvoknc1CZFkKnkcuU8NFlfRuCxzLvvNsbf8g5y4-I8yPi_Ig4PyOOmYcx4xDxnx8EqDmIPxN1eYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869339422</pqid></control><display><type>article</type><title>Cryogenic design of a superconducting magnet with a copper cable-in-conduit conductor filled with static superfluid helium</title><source>IEEE Electronic Library (IEL)</source><creator>Pontarollo, T. ; Maksoud, W. Abdel ; Berriaud, C. ; Correia-Machado, R. ; Donga, T. ; Drouen, Y. ; Duranona, U. ; Godon, P. ; Godon, R. ; Jurie, S. ; Lorin, C. ; Scola, L. ; Segrestan, L. ; Solenne, N. ; Stacchi, F.</creator><creatorcontrib>Pontarollo, T. ; Maksoud, W. Abdel ; Berriaud, C. ; Correia-Machado, R. ; Donga, T. ; Drouen, Y. ; Duranona, U. ; Godon, P. ; Godon, R. ; Jurie, S. ; Lorin, C. ; Scola, L. ; Segrestan, L. ; Solenne, N. ; Stacchi, F.</creatorcontrib><description><![CDATA[In the field of dark matter research, the MAgnetized Disk and Mirror Axion eXperiment (MADMAX) aims for the direct search of axions in a mass range around 100μeV. To have enough sensitivity on this range a dipole composed of 18 coils must reach a figure of merit of 100 T <inline-formula><tex-math notation="LaTeX">\mathbf {^{2}}</tex-math></inline-formula> m<inline-formula><tex-math notation="LaTeX">\mathbf {^{2}}</tex-math></inline-formula>. For this purpose, the use of a cable-in-conduit conductor (CICC) with a copper profile filled with static superfluid helium is under investigation. In order to prove the reliability of such a conductor in this magnet design as well as characterizing the quench propagation, a magnet solenoid mockup is tested within the JT60SA Cold Test Facility (CTF). To reproduce the thermal configuration of a MADMAX coil, the solenoid mockup is cooled down at 1.8 K directly through the void section of the CICC by pressurised superfluid helium and the mandrel, by conduction, without being immersed in a helium bath. The long distance to the heat exchanger coupled with the narrow helium section in the CICC limits the Gorter-Mellink heat transport, thus the cool down efficiency and heat losses must be tackled. This paper describes the thermal design of the experimental facility, the explanation of a thermal model for superfluid helium cool down and operation and the first experimental results.]]></description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2023.3309152</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Axion ; CICC ; Coils ; Conductors ; Copper ; Dark matter ; Dipoles ; Figure of merit ; Fluids ; Gorter-Mellink ; Heat exchangers ; Heating systems ; Helium ; Liquid helium ; Magnetic noise ; Magnetic shielding ; Mockups ; Nb-Ti ; Solenoids ; Superconducting magnets ; superfluid ; Superfluidity ; Test facilities ; Thermal analysis ; Thermal design</subject><ispartof>IEEE transactions on applied superconductivity, 2023-10, Vol.33 (7), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-40ca602d7fc581bdced23a02a49e82f6ea29a23d2e0192961556c7fb968948303</citedby><cites>FETCH-LOGICAL-c294t-40ca602d7fc581bdced23a02a49e82f6ea29a23d2e0192961556c7fb968948303</cites><orcidid>0000-0002-0256-4331 ; 0000-0003-1306-5682 ; 0000-0001-5286-6875 ; 0009-0002-6538-671X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10232872$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10232872$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pontarollo, T.</creatorcontrib><creatorcontrib>Maksoud, W. Abdel</creatorcontrib><creatorcontrib>Berriaud, C.</creatorcontrib><creatorcontrib>Correia-Machado, R.</creatorcontrib><creatorcontrib>Donga, T.</creatorcontrib><creatorcontrib>Drouen, Y.</creatorcontrib><creatorcontrib>Duranona, U.</creatorcontrib><creatorcontrib>Godon, P.</creatorcontrib><creatorcontrib>Godon, R.</creatorcontrib><creatorcontrib>Jurie, S.</creatorcontrib><creatorcontrib>Lorin, C.</creatorcontrib><creatorcontrib>Scola, L.</creatorcontrib><creatorcontrib>Segrestan, L.</creatorcontrib><creatorcontrib>Solenne, N.</creatorcontrib><creatorcontrib>Stacchi, F.</creatorcontrib><title>Cryogenic design of a superconducting magnet with a copper cable-in-conduit conductor filled with static superfluid helium</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description><![CDATA[In the field of dark matter research, the MAgnetized Disk and Mirror Axion eXperiment (MADMAX) aims for the direct search of axions in a mass range around 100μeV. To have enough sensitivity on this range a dipole composed of 18 coils must reach a figure of merit of 100 T <inline-formula><tex-math notation="LaTeX">\mathbf {^{2}}</tex-math></inline-formula> m<inline-formula><tex-math notation="LaTeX">\mathbf {^{2}}</tex-math></inline-formula>. For this purpose, the use of a cable-in-conduit conductor (CICC) with a copper profile filled with static superfluid helium is under investigation. In order to prove the reliability of such a conductor in this magnet design as well as characterizing the quench propagation, a magnet solenoid mockup is tested within the JT60SA Cold Test Facility (CTF). To reproduce the thermal configuration of a MADMAX coil, the solenoid mockup is cooled down at 1.8 K directly through the void section of the CICC by pressurised superfluid helium and the mandrel, by conduction, without being immersed in a helium bath. The long distance to the heat exchanger coupled with the narrow helium section in the CICC limits the Gorter-Mellink heat transport, thus the cool down efficiency and heat losses must be tackled. This paper describes the thermal design of the experimental facility, the explanation of a thermal model for superfluid helium cool down and operation and the first experimental results.]]></description><subject>Axion</subject><subject>CICC</subject><subject>Coils</subject><subject>Conductors</subject><subject>Copper</subject><subject>Dark matter</subject><subject>Dipoles</subject><subject>Figure of merit</subject><subject>Fluids</subject><subject>Gorter-Mellink</subject><subject>Heat exchangers</subject><subject>Heating systems</subject><subject>Helium</subject><subject>Liquid helium</subject><subject>Magnetic noise</subject><subject>Magnetic shielding</subject><subject>Mockups</subject><subject>Nb-Ti</subject><subject>Solenoids</subject><subject>Superconducting magnets</subject><subject>superfluid</subject><subject>Superfluidity</subject><subject>Test facilities</subject><subject>Thermal analysis</subject><subject>Thermal design</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAUx4MoOKd_gOAh4LkzeWm65DiGv2DgwXkuWfraZXRtTVpk_vVm6w6e3oPvj8f7EHLP2Yxzpp_Wi8_lDBiImRBMcwkXZMKlVAlILi_jziRPFIC4Jjch7BjjqUrlhPwu_aGtsHGWFhhc1dC2pIaGoUNv26YYbO-aiu5N1WBPf1y_japtuyhTazY1Jq5JTkbX03Og9bR0dY3F6A-96WP9qbKsB1fQLdZu2N-Sq9LUAe_Oc0q-Xp7Xy7dk9fH6vlysEgs67ZOUWZMxKOallYpvCosFCMPApBoVlBka0AZEAci4Bp3FrzM7Lzc6UzpVgokpeRx7O99-Dxj6fNcOvoknc1CZFkKnkcuU8NFlfRuCxzLvvNsbf8g5y4-I8yPi_Ig4PyOOmYcx4xDxnx8EqDmIPxN1eYQ</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Pontarollo, T.</creator><creator>Maksoud, W. Abdel</creator><creator>Berriaud, C.</creator><creator>Correia-Machado, R.</creator><creator>Donga, T.</creator><creator>Drouen, Y.</creator><creator>Duranona, U.</creator><creator>Godon, P.</creator><creator>Godon, R.</creator><creator>Jurie, S.</creator><creator>Lorin, C.</creator><creator>Scola, L.</creator><creator>Segrestan, L.</creator><creator>Solenne, N.</creator><creator>Stacchi, F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0256-4331</orcidid><orcidid>https://orcid.org/0000-0003-1306-5682</orcidid><orcidid>https://orcid.org/0000-0001-5286-6875</orcidid><orcidid>https://orcid.org/0009-0002-6538-671X</orcidid></search><sort><creationdate>20231001</creationdate><title>Cryogenic design of a superconducting magnet with a copper cable-in-conduit conductor filled with static superfluid helium</title><author>Pontarollo, T. ; Maksoud, W. Abdel ; Berriaud, C. ; Correia-Machado, R. ; Donga, T. ; Drouen, Y. ; Duranona, U. ; Godon, P. ; Godon, R. ; Jurie, S. ; Lorin, C. ; Scola, L. ; Segrestan, L. ; Solenne, N. ; Stacchi, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-40ca602d7fc581bdced23a02a49e82f6ea29a23d2e0192961556c7fb968948303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Axion</topic><topic>CICC</topic><topic>Coils</topic><topic>Conductors</topic><topic>Copper</topic><topic>Dark matter</topic><topic>Dipoles</topic><topic>Figure of merit</topic><topic>Fluids</topic><topic>Gorter-Mellink</topic><topic>Heat exchangers</topic><topic>Heating systems</topic><topic>Helium</topic><topic>Liquid helium</topic><topic>Magnetic noise</topic><topic>Magnetic shielding</topic><topic>Mockups</topic><topic>Nb-Ti</topic><topic>Solenoids</topic><topic>Superconducting magnets</topic><topic>superfluid</topic><topic>Superfluidity</topic><topic>Test facilities</topic><topic>Thermal analysis</topic><topic>Thermal design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pontarollo, T.</creatorcontrib><creatorcontrib>Maksoud, W. Abdel</creatorcontrib><creatorcontrib>Berriaud, C.</creatorcontrib><creatorcontrib>Correia-Machado, R.</creatorcontrib><creatorcontrib>Donga, T.</creatorcontrib><creatorcontrib>Drouen, Y.</creatorcontrib><creatorcontrib>Duranona, U.</creatorcontrib><creatorcontrib>Godon, P.</creatorcontrib><creatorcontrib>Godon, R.</creatorcontrib><creatorcontrib>Jurie, S.</creatorcontrib><creatorcontrib>Lorin, C.</creatorcontrib><creatorcontrib>Scola, L.</creatorcontrib><creatorcontrib>Segrestan, L.</creatorcontrib><creatorcontrib>Solenne, N.</creatorcontrib><creatorcontrib>Stacchi, F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pontarollo, T.</au><au>Maksoud, W. Abdel</au><au>Berriaud, C.</au><au>Correia-Machado, R.</au><au>Donga, T.</au><au>Drouen, Y.</au><au>Duranona, U.</au><au>Godon, P.</au><au>Godon, R.</au><au>Jurie, S.</au><au>Lorin, C.</au><au>Scola, L.</au><au>Segrestan, L.</au><au>Solenne, N.</au><au>Stacchi, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryogenic design of a superconducting magnet with a copper cable-in-conduit conductor filled with static superfluid helium</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>33</volume><issue>7</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract><![CDATA[In the field of dark matter research, the MAgnetized Disk and Mirror Axion eXperiment (MADMAX) aims for the direct search of axions in a mass range around 100μeV. To have enough sensitivity on this range a dipole composed of 18 coils must reach a figure of merit of 100 T <inline-formula><tex-math notation="LaTeX">\mathbf {^{2}}</tex-math></inline-formula> m<inline-formula><tex-math notation="LaTeX">\mathbf {^{2}}</tex-math></inline-formula>. For this purpose, the use of a cable-in-conduit conductor (CICC) with a copper profile filled with static superfluid helium is under investigation. In order to prove the reliability of such a conductor in this magnet design as well as characterizing the quench propagation, a magnet solenoid mockup is tested within the JT60SA Cold Test Facility (CTF). To reproduce the thermal configuration of a MADMAX coil, the solenoid mockup is cooled down at 1.8 K directly through the void section of the CICC by pressurised superfluid helium and the mandrel, by conduction, without being immersed in a helium bath. The long distance to the heat exchanger coupled with the narrow helium section in the CICC limits the Gorter-Mellink heat transport, thus the cool down efficiency and heat losses must be tackled. This paper describes the thermal design of the experimental facility, the explanation of a thermal model for superfluid helium cool down and operation and the first experimental results.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2023.3309152</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0256-4331</orcidid><orcidid>https://orcid.org/0000-0003-1306-5682</orcidid><orcidid>https://orcid.org/0000-0001-5286-6875</orcidid><orcidid>https://orcid.org/0009-0002-6538-671X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2023-10, Vol.33 (7), p.1-12
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_2869339422
source IEEE Electronic Library (IEL)
subjects Axion
CICC
Coils
Conductors
Copper
Dark matter
Dipoles
Figure of merit
Fluids
Gorter-Mellink
Heat exchangers
Heating systems
Helium
Liquid helium
Magnetic noise
Magnetic shielding
Mockups
Nb-Ti
Solenoids
Superconducting magnets
superfluid
Superfluidity
Test facilities
Thermal analysis
Thermal design
title Cryogenic design of a superconducting magnet with a copper cable-in-conduit conductor filled with static superfluid helium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryogenic%20design%20of%20a%20superconducting%20magnet%20with%20a%20copper%20cable-in-conduit%20conductor%20filled%20with%20static%20superfluid%20helium&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Pontarollo,%20T.&rft.date=2023-10-01&rft.volume=33&rft.issue=7&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2023.3309152&rft_dat=%3Cproquest_RIE%3E2869339422%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869339422&rft_id=info:pmid/&rft_ieee_id=10232872&rfr_iscdi=true