Network Traffic Prediction Model in a Data-Driven Digital Twin Network Architecture
The proliferation of immersive services, including virtual reality/augmented reality, holographic content, and the metaverse, has led to an increase in the complexity of communication networks, and consequently, the complexity of network management. Recently, digital twin network technology, which a...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2023-09, Vol.12 (18), p.3957 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 18 |
container_start_page | 3957 |
container_title | Electronics (Basel) |
container_volume | 12 |
creator | Shin, Hyeju Oh, Seungmin Isah, Abubakar Aliyu, Ibrahim Park, Jaehyung Kim, Jinsul |
description | The proliferation of immersive services, including virtual reality/augmented reality, holographic content, and the metaverse, has led to an increase in the complexity of communication networks, and consequently, the complexity of network management. Recently, digital twin network technology, which applies digital twin technology to the field of communication networks, has been predicted to be an effective means of managing complex modern networks. In this paper, a digital twin network data pipeline architecture is proposed that demonstrates an integrated structure for flow within the digital twin network and network modeling from a data perspective. In addition, a network traffic modeling technique using data feature extraction techniques is proposed to realize the digital twin network, which requires the use of massive streaming data. The proposed method utilizes the data generated in the OMNeT++ environment and verifies that the learning time is reduced by approximately 25% depending on the feature extraction interval, while the accuracy remains similar. |
doi_str_mv | 10.3390/electronics12183957 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2869330232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A771803629</galeid><sourcerecordid>A771803629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-320db90bfa22e2542da3fdb9285e97370bd7d7920f827a714a04b1fdca2683813</originalsourceid><addsrcrecordid>eNptUMtOAzEMjBBIVKVfwCUS5y2J3TabY9XykspDopxX2TxKynZTsikVf09QQeKAfbA1nrGtIeScsyGiZJe2sTrF0HrdceAlyrE4Ij1gQhYSJBz_6U_JoOvWLIfkWCLrkecHm_YhvtFlVM55TZ-iNV4nH1p6H4xtqG-ponOVVDGP_sO2dO5XPqmGLvd59CufRv3qU35kF-0ZOXGq6ezgp_bJy_XVcnZbLB5v7mbTRaFxwlOBwEwtWe0UgIXxCIxClxEox1YKFKw2wggJzJUglOAjxUY1d0YrmJRYcuyTi8PebQzvO9ulah12sc0nKygnEpEBQmYND6yVamzlWxdSVDqnsRuvQ2udz_hUCF4ynIDMAjwIdAxdF62rttFvVPysOKu-Ha_-cRy_ACRrdhI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869330232</pqid></control><display><type>article</type><title>Network Traffic Prediction Model in a Data-Driven Digital Twin Network Architecture</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shin, Hyeju ; Oh, Seungmin ; Isah, Abubakar ; Aliyu, Ibrahim ; Park, Jaehyung ; Kim, Jinsul</creator><creatorcontrib>Shin, Hyeju ; Oh, Seungmin ; Isah, Abubakar ; Aliyu, Ibrahim ; Park, Jaehyung ; Kim, Jinsul</creatorcontrib><description>The proliferation of immersive services, including virtual reality/augmented reality, holographic content, and the metaverse, has led to an increase in the complexity of communication networks, and consequently, the complexity of network management. Recently, digital twin network technology, which applies digital twin technology to the field of communication networks, has been predicted to be an effective means of managing complex modern networks. In this paper, a digital twin network data pipeline architecture is proposed that demonstrates an integrated structure for flow within the digital twin network and network modeling from a data perspective. In addition, a network traffic modeling technique using data feature extraction techniques is proposed to realize the digital twin network, which requires the use of massive streaming data. The proposed method utilizes the data generated in the OMNeT++ environment and verifies that the learning time is reduced by approximately 25% depending on the feature extraction interval, while the accuracy remains similar.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12183957</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Access control ; Augmented reality ; Communication ; Communication networks ; Communications networks ; Communications traffic ; Complexity ; Computer architecture ; Computer simulation ; Digital twins ; Digitization ; Electronic data processing ; Feature extraction ; Interfaces ; Machine learning ; Methods ; Modelling ; Network management systems ; Pipelining (computers) ; Prediction models ; Software ; Traffic models ; User services ; Virtual reality</subject><ispartof>Electronics (Basel), 2023-09, Vol.12 (18), p.3957</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-320db90bfa22e2542da3fdb9285e97370bd7d7920f827a714a04b1fdca2683813</citedby><cites>FETCH-LOGICAL-c361t-320db90bfa22e2542da3fdb9285e97370bd7d7920f827a714a04b1fdca2683813</cites><orcidid>0000-0003-2294-3969 ; 0009-0002-4736-9166 ; 0000-0002-0420-5658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shin, Hyeju</creatorcontrib><creatorcontrib>Oh, Seungmin</creatorcontrib><creatorcontrib>Isah, Abubakar</creatorcontrib><creatorcontrib>Aliyu, Ibrahim</creatorcontrib><creatorcontrib>Park, Jaehyung</creatorcontrib><creatorcontrib>Kim, Jinsul</creatorcontrib><title>Network Traffic Prediction Model in a Data-Driven Digital Twin Network Architecture</title><title>Electronics (Basel)</title><description>The proliferation of immersive services, including virtual reality/augmented reality, holographic content, and the metaverse, has led to an increase in the complexity of communication networks, and consequently, the complexity of network management. Recently, digital twin network technology, which applies digital twin technology to the field of communication networks, has been predicted to be an effective means of managing complex modern networks. In this paper, a digital twin network data pipeline architecture is proposed that demonstrates an integrated structure for flow within the digital twin network and network modeling from a data perspective. In addition, a network traffic modeling technique using data feature extraction techniques is proposed to realize the digital twin network, which requires the use of massive streaming data. The proposed method utilizes the data generated in the OMNeT++ environment and verifies that the learning time is reduced by approximately 25% depending on the feature extraction interval, while the accuracy remains similar.</description><subject>Access control</subject><subject>Augmented reality</subject><subject>Communication</subject><subject>Communication networks</subject><subject>Communications networks</subject><subject>Communications traffic</subject><subject>Complexity</subject><subject>Computer architecture</subject><subject>Computer simulation</subject><subject>Digital twins</subject><subject>Digitization</subject><subject>Electronic data processing</subject><subject>Feature extraction</subject><subject>Interfaces</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Modelling</subject><subject>Network management systems</subject><subject>Pipelining (computers)</subject><subject>Prediction models</subject><subject>Software</subject><subject>Traffic models</subject><subject>User services</subject><subject>Virtual reality</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUMtOAzEMjBBIVKVfwCUS5y2J3TabY9XykspDopxX2TxKynZTsikVf09QQeKAfbA1nrGtIeScsyGiZJe2sTrF0HrdceAlyrE4Ij1gQhYSJBz_6U_JoOvWLIfkWCLrkecHm_YhvtFlVM55TZ-iNV4nH1p6H4xtqG-ponOVVDGP_sO2dO5XPqmGLvd59CufRv3qU35kF-0ZOXGq6ezgp_bJy_XVcnZbLB5v7mbTRaFxwlOBwEwtWe0UgIXxCIxClxEox1YKFKw2wggJzJUglOAjxUY1d0YrmJRYcuyTi8PebQzvO9ulah12sc0nKygnEpEBQmYND6yVamzlWxdSVDqnsRuvQ2udz_hUCF4ynIDMAjwIdAxdF62rttFvVPysOKu-Ha_-cRy_ACRrdhI</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Shin, Hyeju</creator><creator>Oh, Seungmin</creator><creator>Isah, Abubakar</creator><creator>Aliyu, Ibrahim</creator><creator>Park, Jaehyung</creator><creator>Kim, Jinsul</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2294-3969</orcidid><orcidid>https://orcid.org/0009-0002-4736-9166</orcidid><orcidid>https://orcid.org/0000-0002-0420-5658</orcidid></search><sort><creationdate>20230901</creationdate><title>Network Traffic Prediction Model in a Data-Driven Digital Twin Network Architecture</title><author>Shin, Hyeju ; Oh, Seungmin ; Isah, Abubakar ; Aliyu, Ibrahim ; Park, Jaehyung ; Kim, Jinsul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-320db90bfa22e2542da3fdb9285e97370bd7d7920f827a714a04b1fdca2683813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Access control</topic><topic>Augmented reality</topic><topic>Communication</topic><topic>Communication networks</topic><topic>Communications networks</topic><topic>Communications traffic</topic><topic>Complexity</topic><topic>Computer architecture</topic><topic>Computer simulation</topic><topic>Digital twins</topic><topic>Digitization</topic><topic>Electronic data processing</topic><topic>Feature extraction</topic><topic>Interfaces</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Modelling</topic><topic>Network management systems</topic><topic>Pipelining (computers)</topic><topic>Prediction models</topic><topic>Software</topic><topic>Traffic models</topic><topic>User services</topic><topic>Virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Hyeju</creatorcontrib><creatorcontrib>Oh, Seungmin</creatorcontrib><creatorcontrib>Isah, Abubakar</creatorcontrib><creatorcontrib>Aliyu, Ibrahim</creatorcontrib><creatorcontrib>Park, Jaehyung</creatorcontrib><creatorcontrib>Kim, Jinsul</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Hyeju</au><au>Oh, Seungmin</au><au>Isah, Abubakar</au><au>Aliyu, Ibrahim</au><au>Park, Jaehyung</au><au>Kim, Jinsul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network Traffic Prediction Model in a Data-Driven Digital Twin Network Architecture</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>12</volume><issue>18</issue><spage>3957</spage><pages>3957-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The proliferation of immersive services, including virtual reality/augmented reality, holographic content, and the metaverse, has led to an increase in the complexity of communication networks, and consequently, the complexity of network management. Recently, digital twin network technology, which applies digital twin technology to the field of communication networks, has been predicted to be an effective means of managing complex modern networks. In this paper, a digital twin network data pipeline architecture is proposed that demonstrates an integrated structure for flow within the digital twin network and network modeling from a data perspective. In addition, a network traffic modeling technique using data feature extraction techniques is proposed to realize the digital twin network, which requires the use of massive streaming data. The proposed method utilizes the data generated in the OMNeT++ environment and verifies that the learning time is reduced by approximately 25% depending on the feature extraction interval, while the accuracy remains similar.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12183957</doi><orcidid>https://orcid.org/0000-0003-2294-3969</orcidid><orcidid>https://orcid.org/0009-0002-4736-9166</orcidid><orcidid>https://orcid.org/0000-0002-0420-5658</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2023-09, Vol.12 (18), p.3957 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2869330232 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Access control Augmented reality Communication Communication networks Communications networks Communications traffic Complexity Computer architecture Computer simulation Digital twins Digitization Electronic data processing Feature extraction Interfaces Machine learning Methods Modelling Network management systems Pipelining (computers) Prediction models Software Traffic models User services Virtual reality |
title | Network Traffic Prediction Model in a Data-Driven Digital Twin Network Architecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A19%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20Traffic%20Prediction%20Model%20in%20a%20Data-Driven%20Digital%20Twin%20Network%20Architecture&rft.jtitle=Electronics%20(Basel)&rft.au=Shin,%20Hyeju&rft.date=2023-09-01&rft.volume=12&rft.issue=18&rft.spage=3957&rft.pages=3957-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12183957&rft_dat=%3Cgale_proqu%3EA771803629%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869330232&rft_id=info:pmid/&rft_galeid=A771803629&rfr_iscdi=true |