Network Traffic Prediction Model in a Data-Driven Digital Twin Network Architecture

The proliferation of immersive services, including virtual reality/augmented reality, holographic content, and the metaverse, has led to an increase in the complexity of communication networks, and consequently, the complexity of network management. Recently, digital twin network technology, which a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2023-09, Vol.12 (18), p.3957
Hauptverfasser: Shin, Hyeju, Oh, Seungmin, Isah, Abubakar, Aliyu, Ibrahim, Park, Jaehyung, Kim, Jinsul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page 3957
container_title Electronics (Basel)
container_volume 12
creator Shin, Hyeju
Oh, Seungmin
Isah, Abubakar
Aliyu, Ibrahim
Park, Jaehyung
Kim, Jinsul
description The proliferation of immersive services, including virtual reality/augmented reality, holographic content, and the metaverse, has led to an increase in the complexity of communication networks, and consequently, the complexity of network management. Recently, digital twin network technology, which applies digital twin technology to the field of communication networks, has been predicted to be an effective means of managing complex modern networks. In this paper, a digital twin network data pipeline architecture is proposed that demonstrates an integrated structure for flow within the digital twin network and network modeling from a data perspective. In addition, a network traffic modeling technique using data feature extraction techniques is proposed to realize the digital twin network, which requires the use of massive streaming data. The proposed method utilizes the data generated in the OMNeT++ environment and verifies that the learning time is reduced by approximately 25% depending on the feature extraction interval, while the accuracy remains similar.
doi_str_mv 10.3390/electronics12183957
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2869330232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A771803629</galeid><sourcerecordid>A771803629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-320db90bfa22e2542da3fdb9285e97370bd7d7920f827a714a04b1fdca2683813</originalsourceid><addsrcrecordid>eNptUMtOAzEMjBBIVKVfwCUS5y2J3TabY9XykspDopxX2TxKynZTsikVf09QQeKAfbA1nrGtIeScsyGiZJe2sTrF0HrdceAlyrE4Ij1gQhYSJBz_6U_JoOvWLIfkWCLrkecHm_YhvtFlVM55TZ-iNV4nH1p6H4xtqG-ponOVVDGP_sO2dO5XPqmGLvd59CufRv3qU35kF-0ZOXGq6ezgp_bJy_XVcnZbLB5v7mbTRaFxwlOBwEwtWe0UgIXxCIxClxEox1YKFKw2wggJzJUglOAjxUY1d0YrmJRYcuyTi8PebQzvO9ulah12sc0nKygnEpEBQmYND6yVamzlWxdSVDqnsRuvQ2udz_hUCF4ynIDMAjwIdAxdF62rttFvVPysOKu-Ha_-cRy_ACRrdhI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869330232</pqid></control><display><type>article</type><title>Network Traffic Prediction Model in a Data-Driven Digital Twin Network Architecture</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shin, Hyeju ; Oh, Seungmin ; Isah, Abubakar ; Aliyu, Ibrahim ; Park, Jaehyung ; Kim, Jinsul</creator><creatorcontrib>Shin, Hyeju ; Oh, Seungmin ; Isah, Abubakar ; Aliyu, Ibrahim ; Park, Jaehyung ; Kim, Jinsul</creatorcontrib><description>The proliferation of immersive services, including virtual reality/augmented reality, holographic content, and the metaverse, has led to an increase in the complexity of communication networks, and consequently, the complexity of network management. Recently, digital twin network technology, which applies digital twin technology to the field of communication networks, has been predicted to be an effective means of managing complex modern networks. In this paper, a digital twin network data pipeline architecture is proposed that demonstrates an integrated structure for flow within the digital twin network and network modeling from a data perspective. In addition, a network traffic modeling technique using data feature extraction techniques is proposed to realize the digital twin network, which requires the use of massive streaming data. The proposed method utilizes the data generated in the OMNeT++ environment and verifies that the learning time is reduced by approximately 25% depending on the feature extraction interval, while the accuracy remains similar.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12183957</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Access control ; Augmented reality ; Communication ; Communication networks ; Communications networks ; Communications traffic ; Complexity ; Computer architecture ; Computer simulation ; Digital twins ; Digitization ; Electronic data processing ; Feature extraction ; Interfaces ; Machine learning ; Methods ; Modelling ; Network management systems ; Pipelining (computers) ; Prediction models ; Software ; Traffic models ; User services ; Virtual reality</subject><ispartof>Electronics (Basel), 2023-09, Vol.12 (18), p.3957</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-320db90bfa22e2542da3fdb9285e97370bd7d7920f827a714a04b1fdca2683813</citedby><cites>FETCH-LOGICAL-c361t-320db90bfa22e2542da3fdb9285e97370bd7d7920f827a714a04b1fdca2683813</cites><orcidid>0000-0003-2294-3969 ; 0009-0002-4736-9166 ; 0000-0002-0420-5658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shin, Hyeju</creatorcontrib><creatorcontrib>Oh, Seungmin</creatorcontrib><creatorcontrib>Isah, Abubakar</creatorcontrib><creatorcontrib>Aliyu, Ibrahim</creatorcontrib><creatorcontrib>Park, Jaehyung</creatorcontrib><creatorcontrib>Kim, Jinsul</creatorcontrib><title>Network Traffic Prediction Model in a Data-Driven Digital Twin Network Architecture</title><title>Electronics (Basel)</title><description>The proliferation of immersive services, including virtual reality/augmented reality, holographic content, and the metaverse, has led to an increase in the complexity of communication networks, and consequently, the complexity of network management. Recently, digital twin network technology, which applies digital twin technology to the field of communication networks, has been predicted to be an effective means of managing complex modern networks. In this paper, a digital twin network data pipeline architecture is proposed that demonstrates an integrated structure for flow within the digital twin network and network modeling from a data perspective. In addition, a network traffic modeling technique using data feature extraction techniques is proposed to realize the digital twin network, which requires the use of massive streaming data. The proposed method utilizes the data generated in the OMNeT++ environment and verifies that the learning time is reduced by approximately 25% depending on the feature extraction interval, while the accuracy remains similar.</description><subject>Access control</subject><subject>Augmented reality</subject><subject>Communication</subject><subject>Communication networks</subject><subject>Communications networks</subject><subject>Communications traffic</subject><subject>Complexity</subject><subject>Computer architecture</subject><subject>Computer simulation</subject><subject>Digital twins</subject><subject>Digitization</subject><subject>Electronic data processing</subject><subject>Feature extraction</subject><subject>Interfaces</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Modelling</subject><subject>Network management systems</subject><subject>Pipelining (computers)</subject><subject>Prediction models</subject><subject>Software</subject><subject>Traffic models</subject><subject>User services</subject><subject>Virtual reality</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUMtOAzEMjBBIVKVfwCUS5y2J3TabY9XykspDopxX2TxKynZTsikVf09QQeKAfbA1nrGtIeScsyGiZJe2sTrF0HrdceAlyrE4Ij1gQhYSJBz_6U_JoOvWLIfkWCLrkecHm_YhvtFlVM55TZ-iNV4nH1p6H4xtqG-ponOVVDGP_sO2dO5XPqmGLvd59CufRv3qU35kF-0ZOXGq6ezgp_bJy_XVcnZbLB5v7mbTRaFxwlOBwEwtWe0UgIXxCIxClxEox1YKFKw2wggJzJUglOAjxUY1d0YrmJRYcuyTi8PebQzvO9ulah12sc0nKygnEpEBQmYND6yVamzlWxdSVDqnsRuvQ2udz_hUCF4ynIDMAjwIdAxdF62rttFvVPysOKu-Ha_-cRy_ACRrdhI</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Shin, Hyeju</creator><creator>Oh, Seungmin</creator><creator>Isah, Abubakar</creator><creator>Aliyu, Ibrahim</creator><creator>Park, Jaehyung</creator><creator>Kim, Jinsul</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2294-3969</orcidid><orcidid>https://orcid.org/0009-0002-4736-9166</orcidid><orcidid>https://orcid.org/0000-0002-0420-5658</orcidid></search><sort><creationdate>20230901</creationdate><title>Network Traffic Prediction Model in a Data-Driven Digital Twin Network Architecture</title><author>Shin, Hyeju ; Oh, Seungmin ; Isah, Abubakar ; Aliyu, Ibrahim ; Park, Jaehyung ; Kim, Jinsul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-320db90bfa22e2542da3fdb9285e97370bd7d7920f827a714a04b1fdca2683813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Access control</topic><topic>Augmented reality</topic><topic>Communication</topic><topic>Communication networks</topic><topic>Communications networks</topic><topic>Communications traffic</topic><topic>Complexity</topic><topic>Computer architecture</topic><topic>Computer simulation</topic><topic>Digital twins</topic><topic>Digitization</topic><topic>Electronic data processing</topic><topic>Feature extraction</topic><topic>Interfaces</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Modelling</topic><topic>Network management systems</topic><topic>Pipelining (computers)</topic><topic>Prediction models</topic><topic>Software</topic><topic>Traffic models</topic><topic>User services</topic><topic>Virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Hyeju</creatorcontrib><creatorcontrib>Oh, Seungmin</creatorcontrib><creatorcontrib>Isah, Abubakar</creatorcontrib><creatorcontrib>Aliyu, Ibrahim</creatorcontrib><creatorcontrib>Park, Jaehyung</creatorcontrib><creatorcontrib>Kim, Jinsul</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Hyeju</au><au>Oh, Seungmin</au><au>Isah, Abubakar</au><au>Aliyu, Ibrahim</au><au>Park, Jaehyung</au><au>Kim, Jinsul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network Traffic Prediction Model in a Data-Driven Digital Twin Network Architecture</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>12</volume><issue>18</issue><spage>3957</spage><pages>3957-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The proliferation of immersive services, including virtual reality/augmented reality, holographic content, and the metaverse, has led to an increase in the complexity of communication networks, and consequently, the complexity of network management. Recently, digital twin network technology, which applies digital twin technology to the field of communication networks, has been predicted to be an effective means of managing complex modern networks. In this paper, a digital twin network data pipeline architecture is proposed that demonstrates an integrated structure for flow within the digital twin network and network modeling from a data perspective. In addition, a network traffic modeling technique using data feature extraction techniques is proposed to realize the digital twin network, which requires the use of massive streaming data. The proposed method utilizes the data generated in the OMNeT++ environment and verifies that the learning time is reduced by approximately 25% depending on the feature extraction interval, while the accuracy remains similar.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12183957</doi><orcidid>https://orcid.org/0000-0003-2294-3969</orcidid><orcidid>https://orcid.org/0009-0002-4736-9166</orcidid><orcidid>https://orcid.org/0000-0002-0420-5658</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2023-09, Vol.12 (18), p.3957
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2869330232
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Access control
Augmented reality
Communication
Communication networks
Communications networks
Communications traffic
Complexity
Computer architecture
Computer simulation
Digital twins
Digitization
Electronic data processing
Feature extraction
Interfaces
Machine learning
Methods
Modelling
Network management systems
Pipelining (computers)
Prediction models
Software
Traffic models
User services
Virtual reality
title Network Traffic Prediction Model in a Data-Driven Digital Twin Network Architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A19%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20Traffic%20Prediction%20Model%20in%20a%20Data-Driven%20Digital%20Twin%20Network%20Architecture&rft.jtitle=Electronics%20(Basel)&rft.au=Shin,%20Hyeju&rft.date=2023-09-01&rft.volume=12&rft.issue=18&rft.spage=3957&rft.pages=3957-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12183957&rft_dat=%3Cgale_proqu%3EA771803629%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869330232&rft_id=info:pmid/&rft_galeid=A771803629&rfr_iscdi=true