Sub-Annual Scale LandTrendr: Sub-Annual Scale Deforestation Detection Algorithm Using Multi-Source Time Series Data

In cloudy and rainy regions, frequent cloud cover limits clear data obtained using a single optical sensor, posing a substantial challenge for detecting deforestation events on subannual scale. In this article, a subannual scale deforestation detection algorithm, namely, the subannual scale LandTren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2023, Vol.16, p.8563-8576
Hauptverfasser: Yang, Baowen, Wu, Ling, Ju, Zhengshan, Liu, Xiangnan, Liu, Meiling, Zhang, Tingwei, Xu, Yuqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8576
container_issue
container_start_page 8563
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 16
creator Yang, Baowen
Wu, Ling
Ju, Zhengshan
Liu, Xiangnan
Liu, Meiling
Zhang, Tingwei
Xu, Yuqi
description In cloudy and rainy regions, frequent cloud cover limits clear data obtained using a single optical sensor, posing a substantial challenge for detecting deforestation events on subannual scale. In this article, a subannual scale deforestation detection algorithm, namely, the subannual scale LandTrendr (SSLT) change detection algorithm, was developed using synergies from multiple data sources. First, a combined time series was constructed by combining Landsat and Sentinel-2 data. Second, a sliding window was applied to spatially normalize the normalized burn ratio and eliminate the effects of forest phenological changes and sensor differences. Finally, an integrated time series was created to fit the SSLT trajectory, and the root-mean-square error (RMSE) of the fitted trajectory was calculated to determine the segmentation threshold. Pixels with a magnitude of change greater than the RMSE for three consecutive times were marked as deforestation pixels. Application of the algorithm to a subtropical forest with low density of clear observations resulted in spatial and temporal accuracies of 88% and 92.8%, respectively. Conclusively, this method provides accurate and timely identification of deforestation events on a subannual scale.
doi_str_mv 10.1109/JSTARS.2023.3312812
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2869329345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10243148</ieee_id><doaj_id>oai_doaj_org_article_43943722774a4f48aa0a134f7dfaa069</doaj_id><sourcerecordid>2869329345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-613505d6d6885bd8c3286b4b24b09533fa305b87be371ceff0111c9becb7c0c83</originalsourceid><addsrcrecordid>eNplUctu1DAUjRBIDIUvgEUk1pn6-tqJzW7UFigahESma8t27MGjTFzsZMHf4zZVhcTqPs-5j1NV74FsAYi8_NYfdj_7LSUUt4hABdAX1YYChwY48pfVBiTKBhhhr6s3OZ8IaWkncVPlfjHNbpoWPda91aOr93oaDslNQ_pU_1e8dj4ml2c9hziVaHb20duNx5jC_Otc3-UwHevvyziHpo9Lsq4-hLOre5eCy_W1nvXb6pXXY3bvnuxFdff55nD1tdn_-HJ7tds3lhE5Ny0gJ3xoh1YIbgZhkYrWMEOZIZIjeo2EG9EZhx1Y5z0BACuNs6azxAq8qG5X3iHqk7pP4azTHxV1UI-JmI5KpznY0SmGkmFHadcxzTwTWhMNyHw3-OK2snB9XLnuU_y9lA-oUzluKuurspVEKpHx0oVrl00x5-T881Qg6kEptSqlHpRST0oV1IcVFZxz_yAoQ2AC_wIlWo8R</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869329345</pqid></control><display><type>article</type><title>Sub-Annual Scale LandTrendr: Sub-Annual Scale Deforestation Detection Algorithm Using Multi-Source Time Series Data</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yang, Baowen ; Wu, Ling ; Ju, Zhengshan ; Liu, Xiangnan ; Liu, Meiling ; Zhang, Tingwei ; Xu, Yuqi</creator><creatorcontrib>Yang, Baowen ; Wu, Ling ; Ju, Zhengshan ; Liu, Xiangnan ; Liu, Meiling ; Zhang, Tingwei ; Xu, Yuqi</creatorcontrib><description>In cloudy and rainy regions, frequent cloud cover limits clear data obtained using a single optical sensor, posing a substantial challenge for detecting deforestation events on subannual scale. In this article, a subannual scale deforestation detection algorithm, namely, the subannual scale LandTrendr (SSLT) change detection algorithm, was developed using synergies from multiple data sources. First, a combined time series was constructed by combining Landsat and Sentinel-2 data. Second, a sliding window was applied to spatially normalize the normalized burn ratio and eliminate the effects of forest phenological changes and sensor differences. Finally, an integrated time series was created to fit the SSLT trajectory, and the root-mean-square error (RMSE) of the fitted trajectory was calculated to determine the segmentation threshold. Pixels with a magnitude of change greater than the RMSE for three consecutive times were marked as deforestation pixels. Application of the algorithm to a subtropical forest with low density of clear observations resulted in spatial and temporal accuracies of 88% and 92.8%, respectively. Conclusively, this method provides accurate and timely identification of deforestation events on a subannual scale.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2023.3312812</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial satellites ; Change detection ; Cloud computing ; Cloud cover ; Clouds ; Deforestation ; Deforestation detection ; Detection ; Earth ; Forestry ; Landsat ; Optical measuring instruments ; phenological change elimination ; Pixels ; Remote sensing ; Root-mean-square errors ; Sensors ; sentinel-2 ; temporal segmentation ; Time series ; Time series analysis ; Tropical forests</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2023, Vol.16, p.8563-8576</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-613505d6d6885bd8c3286b4b24b09533fa305b87be371ceff0111c9becb7c0c83</citedby><cites>FETCH-LOGICAL-c409t-613505d6d6885bd8c3286b4b24b09533fa305b87be371ceff0111c9becb7c0c83</cites><orcidid>0009-0000-9136-1861 ; 0000-0003-0036-7091 ; 0000-0003-1712-191X ; 0000-0001-8662-3476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Yang, Baowen</creatorcontrib><creatorcontrib>Wu, Ling</creatorcontrib><creatorcontrib>Ju, Zhengshan</creatorcontrib><creatorcontrib>Liu, Xiangnan</creatorcontrib><creatorcontrib>Liu, Meiling</creatorcontrib><creatorcontrib>Zhang, Tingwei</creatorcontrib><creatorcontrib>Xu, Yuqi</creatorcontrib><title>Sub-Annual Scale LandTrendr: Sub-Annual Scale Deforestation Detection Algorithm Using Multi-Source Time Series Data</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>In cloudy and rainy regions, frequent cloud cover limits clear data obtained using a single optical sensor, posing a substantial challenge for detecting deforestation events on subannual scale. In this article, a subannual scale deforestation detection algorithm, namely, the subannual scale LandTrendr (SSLT) change detection algorithm, was developed using synergies from multiple data sources. First, a combined time series was constructed by combining Landsat and Sentinel-2 data. Second, a sliding window was applied to spatially normalize the normalized burn ratio and eliminate the effects of forest phenological changes and sensor differences. Finally, an integrated time series was created to fit the SSLT trajectory, and the root-mean-square error (RMSE) of the fitted trajectory was calculated to determine the segmentation threshold. Pixels with a magnitude of change greater than the RMSE for three consecutive times were marked as deforestation pixels. Application of the algorithm to a subtropical forest with low density of clear observations resulted in spatial and temporal accuracies of 88% and 92.8%, respectively. Conclusively, this method provides accurate and timely identification of deforestation events on a subannual scale.</description><subject>Algorithms</subject><subject>Artificial satellites</subject><subject>Change detection</subject><subject>Cloud computing</subject><subject>Cloud cover</subject><subject>Clouds</subject><subject>Deforestation</subject><subject>Deforestation detection</subject><subject>Detection</subject><subject>Earth</subject><subject>Forestry</subject><subject>Landsat</subject><subject>Optical measuring instruments</subject><subject>phenological change elimination</subject><subject>Pixels</subject><subject>Remote sensing</subject><subject>Root-mean-square errors</subject><subject>Sensors</subject><subject>sentinel-2</subject><subject>temporal segmentation</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>Tropical forests</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNplUctu1DAUjRBIDIUvgEUk1pn6-tqJzW7UFigahESma8t27MGjTFzsZMHf4zZVhcTqPs-5j1NV74FsAYi8_NYfdj_7LSUUt4hABdAX1YYChwY48pfVBiTKBhhhr6s3OZ8IaWkncVPlfjHNbpoWPda91aOr93oaDslNQ_pU_1e8dj4ml2c9hziVaHb20duNx5jC_Otc3-UwHevvyziHpo9Lsq4-hLOre5eCy_W1nvXb6pXXY3bvnuxFdff55nD1tdn_-HJ7tds3lhE5Ny0gJ3xoh1YIbgZhkYrWMEOZIZIjeo2EG9EZhx1Y5z0BACuNs6azxAq8qG5X3iHqk7pP4azTHxV1UI-JmI5KpznY0SmGkmFHadcxzTwTWhMNyHw3-OK2snB9XLnuU_y9lA-oUzluKuurspVEKpHx0oVrl00x5-T881Qg6kEptSqlHpRST0oV1IcVFZxz_yAoQ2AC_wIlWo8R</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Yang, Baowen</creator><creator>Wu, Ling</creator><creator>Ju, Zhengshan</creator><creator>Liu, Xiangnan</creator><creator>Liu, Meiling</creator><creator>Zhang, Tingwei</creator><creator>Xu, Yuqi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0000-9136-1861</orcidid><orcidid>https://orcid.org/0000-0003-0036-7091</orcidid><orcidid>https://orcid.org/0000-0003-1712-191X</orcidid><orcidid>https://orcid.org/0000-0001-8662-3476</orcidid></search><sort><creationdate>2023</creationdate><title>Sub-Annual Scale LandTrendr: Sub-Annual Scale Deforestation Detection Algorithm Using Multi-Source Time Series Data</title><author>Yang, Baowen ; Wu, Ling ; Ju, Zhengshan ; Liu, Xiangnan ; Liu, Meiling ; Zhang, Tingwei ; Xu, Yuqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-613505d6d6885bd8c3286b4b24b09533fa305b87be371ceff0111c9becb7c0c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial satellites</topic><topic>Change detection</topic><topic>Cloud computing</topic><topic>Cloud cover</topic><topic>Clouds</topic><topic>Deforestation</topic><topic>Deforestation detection</topic><topic>Detection</topic><topic>Earth</topic><topic>Forestry</topic><topic>Landsat</topic><topic>Optical measuring instruments</topic><topic>phenological change elimination</topic><topic>Pixels</topic><topic>Remote sensing</topic><topic>Root-mean-square errors</topic><topic>Sensors</topic><topic>sentinel-2</topic><topic>temporal segmentation</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>Tropical forests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Baowen</creatorcontrib><creatorcontrib>Wu, Ling</creatorcontrib><creatorcontrib>Ju, Zhengshan</creatorcontrib><creatorcontrib>Liu, Xiangnan</creatorcontrib><creatorcontrib>Liu, Meiling</creatorcontrib><creatorcontrib>Zhang, Tingwei</creatorcontrib><creatorcontrib>Xu, Yuqi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Baowen</au><au>Wu, Ling</au><au>Ju, Zhengshan</au><au>Liu, Xiangnan</au><au>Liu, Meiling</au><au>Zhang, Tingwei</au><au>Xu, Yuqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sub-Annual Scale LandTrendr: Sub-Annual Scale Deforestation Detection Algorithm Using Multi-Source Time Series Data</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2023</date><risdate>2023</risdate><volume>16</volume><spage>8563</spage><epage>8576</epage><pages>8563-8576</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>In cloudy and rainy regions, frequent cloud cover limits clear data obtained using a single optical sensor, posing a substantial challenge for detecting deforestation events on subannual scale. In this article, a subannual scale deforestation detection algorithm, namely, the subannual scale LandTrendr (SSLT) change detection algorithm, was developed using synergies from multiple data sources. First, a combined time series was constructed by combining Landsat and Sentinel-2 data. Second, a sliding window was applied to spatially normalize the normalized burn ratio and eliminate the effects of forest phenological changes and sensor differences. Finally, an integrated time series was created to fit the SSLT trajectory, and the root-mean-square error (RMSE) of the fitted trajectory was calculated to determine the segmentation threshold. Pixels with a magnitude of change greater than the RMSE for three consecutive times were marked as deforestation pixels. Application of the algorithm to a subtropical forest with low density of clear observations resulted in spatial and temporal accuracies of 88% and 92.8%, respectively. Conclusively, this method provides accurate and timely identification of deforestation events on a subannual scale.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2023.3312812</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0000-9136-1861</orcidid><orcidid>https://orcid.org/0000-0003-0036-7091</orcidid><orcidid>https://orcid.org/0000-0003-1712-191X</orcidid><orcidid>https://orcid.org/0000-0001-8662-3476</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2023, Vol.16, p.8563-8576
issn 1939-1404
2151-1535
language eng
recordid cdi_proquest_journals_2869329345
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Artificial satellites
Change detection
Cloud computing
Cloud cover
Clouds
Deforestation
Deforestation detection
Detection
Earth
Forestry
Landsat
Optical measuring instruments
phenological change elimination
Pixels
Remote sensing
Root-mean-square errors
Sensors
sentinel-2
temporal segmentation
Time series
Time series analysis
Tropical forests
title Sub-Annual Scale LandTrendr: Sub-Annual Scale Deforestation Detection Algorithm Using Multi-Source Time Series Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sub-Annual%20Scale%20LandTrendr:%20Sub-Annual%20Scale%20Deforestation%20Detection%20Algorithm%20Using%20Multi-Source%20Time%20Series%20Data&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Yang,%20Baowen&rft.date=2023&rft.volume=16&rft.spage=8563&rft.epage=8576&rft.pages=8563-8576&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2023.3312812&rft_dat=%3Cproquest_doaj_%3E2869329345%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869329345&rft_id=info:pmid/&rft_ieee_id=10243148&rft_doaj_id=oai_doaj_org_article_43943722774a4f48aa0a134f7dfaa069&rfr_iscdi=true