A Hybrid Magnetic Current Sensor With a Multiplexed Ripple-Reduction Loop

This article presents a hybrid magnetic current sensor for galvanically isolated measurements. It consists of a CMOS chip that senses the magnetic field generated by current flowing through a lead-frame-based current rail. Hall plates and coils are used to sense low-frequency (dc to 10 kHz) and high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2023-10, Vol.58 (10), p.1-9
Hauptverfasser: Jouyaeian, Amirhossein, Fan, Qinwen, Zamparette, Roger, Ausserlechner, Udo, Motz, Mario, Makinwa, Kofi A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 10
container_start_page 1
container_title IEEE journal of solid-state circuits
container_volume 58
creator Jouyaeian, Amirhossein
Fan, Qinwen
Zamparette, Roger
Ausserlechner, Udo
Motz, Mario
Makinwa, Kofi A. A.
description This article presents a hybrid magnetic current sensor for galvanically isolated measurements. It consists of a CMOS chip that senses the magnetic field generated by current flowing through a lead-frame-based current rail. Hall plates and coils are used to sense low-frequency (dc to 10 kHz) and high-frequency (10 kHz to 5 MHz) magnetic fields, respectively. With the help of on-chip calibration coils, the biasing current of the Hall plates is trimmed to match the sensitivity of the Hall and coil signal paths. The sensitivity drift of the coil path with temperature is compensated by using temperature-dependent gain-setting resistors, while the drift of the Hall path is compensated by biasing the Hall plates with a proportional-to-absolute-temperature (PTAT) current. The resulting sensitivity drift is less than 9% from -40 ^{\circ} C to 80 ^{\circ} C. The offset of the Hall plates is reduced by the current spinning technique, and the resulting ripple is suppressed by a multiplexed ripple-reduction loop (MMRL). Fabricated in a standard 0.18- \mu m CMOS process, the current sensor occupies 4.6 mm ^{2} and draws 7.8 mA from a 1.8-V supply. It achieves a gain variation of only \pm 2% in a 5-MHz BW. It also achieves high energy efficiency, with an figure of merit (FoM) of 1.6 fW/Hz.
doi_str_mv 10.1109/JSSC.2023.3273389
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2869328072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10129161</ieee_id><sourcerecordid>2869328072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-f0459e15f188385cb0f5e3475f4e4bd60927ef50e4da152278a649fbb496430c3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqzn4ku8cStK20CK2ityUfs7qlJnGTgP33prQHT_MOPO8MPITcApsAMPPwvNmkE864mAieCKHNGRmBUjqCRHyckxFjoCPDGbskV227HVYpNYzIYkrn-zz4kq6yzwo7X9C0DwGrjm6wautA3333RTO66nedb3b4iyVd-2ZI0RrLvuh8XdFlXTfX5MJluxZvTnNM3p4eX9N5tHyZLdLpMiqESLrIMakMgnKgtdCqyJlTKGSinESZlzEzPEGnGMoyA8V5orNYGpfn0sRSsEKMyf3xbhPqnx7bzm7rPlTDS8t1bATXLOEDBUeqCHXbBnS2Cf47C3sLzB6M2YMxezBmT8aGzt2x4xHxHw_cQAziD1SBZgs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869328072</pqid></control><display><type>article</type><title>A Hybrid Magnetic Current Sensor With a Multiplexed Ripple-Reduction Loop</title><source>IEEE Electronic Library (IEL)</source><creator>Jouyaeian, Amirhossein ; Fan, Qinwen ; Zamparette, Roger ; Ausserlechner, Udo ; Motz, Mario ; Makinwa, Kofi A. A.</creator><creatorcontrib>Jouyaeian, Amirhossein ; Fan, Qinwen ; Zamparette, Roger ; Ausserlechner, Udo ; Motz, Mario ; Makinwa, Kofi A. A.</creatorcontrib><description><![CDATA[This article presents a hybrid magnetic current sensor for galvanically isolated measurements. It consists of a CMOS chip that senses the magnetic field generated by current flowing through a lead-frame-based current rail. Hall plates and coils are used to sense low-frequency (dc to 10 kHz) and high-frequency (10 kHz to 5 MHz) magnetic fields, respectively. With the help of on-chip calibration coils, the biasing current of the Hall plates is trimmed to match the sensitivity of the Hall and coil signal paths. The sensitivity drift of the coil path with temperature is compensated by using temperature-dependent gain-setting resistors, while the drift of the Hall path is compensated by biasing the Hall plates with a proportional-to-absolute-temperature (PTAT) current. The resulting sensitivity drift is less than 9% from -40 <inline-formula> <tex-math notation="LaTeX">^{\circ}</tex-math> </inline-formula>C to 80 <inline-formula> <tex-math notation="LaTeX">^{\circ}</tex-math> </inline-formula>C. The offset of the Hall plates is reduced by the current spinning technique, and the resulting ripple is suppressed by a multiplexed ripple-reduction loop (MMRL). Fabricated in a standard 0.18-<inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>m CMOS process, the current sensor occupies 4.6 mm<inline-formula> <tex-math notation="LaTeX">^{2}</tex-math> </inline-formula> and draws 7.8 mA from a 1.8-V supply. It achieves a gain variation of only <inline-formula> <tex-math notation="LaTeX">\pm</tex-math> </inline-formula>2% in a 5-MHz BW. It also achieves high energy efficiency, with an figure of merit (FoM) of 1.6 fW/Hz.]]></description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2023.3273389</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>CMOS ; Coils ; Drift ; Figure of merit ; Galvanic isolation ; hybrid current sensors ; magnetic current sensing ; Magnetic fields ; Multiplexing ; Plates ; Reduction ; ripple-reduction loop (RRL) ; Ripples ; Sensitivity ; Sensors ; Signal paths ; System-on-chip ; temperature compensation ; Temperature dependence ; Temperature sensors ; wide bandwidth</subject><ispartof>IEEE journal of solid-state circuits, 2023-10, Vol.58 (10), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-f0459e15f188385cb0f5e3475f4e4bd60927ef50e4da152278a649fbb496430c3</citedby><cites>FETCH-LOGICAL-c337t-f0459e15f188385cb0f5e3475f4e4bd60927ef50e4da152278a649fbb496430c3</cites><orcidid>0000-0002-8229-9143 ; 0000-0002-2992-5467 ; 0000-0002-3980-9603 ; 0000-0002-6873-6124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10129161$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10129161$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jouyaeian, Amirhossein</creatorcontrib><creatorcontrib>Fan, Qinwen</creatorcontrib><creatorcontrib>Zamparette, Roger</creatorcontrib><creatorcontrib>Ausserlechner, Udo</creatorcontrib><creatorcontrib>Motz, Mario</creatorcontrib><creatorcontrib>Makinwa, Kofi A. A.</creatorcontrib><title>A Hybrid Magnetic Current Sensor With a Multiplexed Ripple-Reduction Loop</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description><![CDATA[This article presents a hybrid magnetic current sensor for galvanically isolated measurements. It consists of a CMOS chip that senses the magnetic field generated by current flowing through a lead-frame-based current rail. Hall plates and coils are used to sense low-frequency (dc to 10 kHz) and high-frequency (10 kHz to 5 MHz) magnetic fields, respectively. With the help of on-chip calibration coils, the biasing current of the Hall plates is trimmed to match the sensitivity of the Hall and coil signal paths. The sensitivity drift of the coil path with temperature is compensated by using temperature-dependent gain-setting resistors, while the drift of the Hall path is compensated by biasing the Hall plates with a proportional-to-absolute-temperature (PTAT) current. The resulting sensitivity drift is less than 9% from -40 <inline-formula> <tex-math notation="LaTeX">^{\circ}</tex-math> </inline-formula>C to 80 <inline-formula> <tex-math notation="LaTeX">^{\circ}</tex-math> </inline-formula>C. The offset of the Hall plates is reduced by the current spinning technique, and the resulting ripple is suppressed by a multiplexed ripple-reduction loop (MMRL). Fabricated in a standard 0.18-<inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>m CMOS process, the current sensor occupies 4.6 mm<inline-formula> <tex-math notation="LaTeX">^{2}</tex-math> </inline-formula> and draws 7.8 mA from a 1.8-V supply. It achieves a gain variation of only <inline-formula> <tex-math notation="LaTeX">\pm</tex-math> </inline-formula>2% in a 5-MHz BW. It also achieves high energy efficiency, with an figure of merit (FoM) of 1.6 fW/Hz.]]></description><subject>CMOS</subject><subject>Coils</subject><subject>Drift</subject><subject>Figure of merit</subject><subject>Galvanic isolation</subject><subject>hybrid current sensors</subject><subject>magnetic current sensing</subject><subject>Magnetic fields</subject><subject>Multiplexing</subject><subject>Plates</subject><subject>Reduction</subject><subject>ripple-reduction loop (RRL)</subject><subject>Ripples</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Signal paths</subject><subject>System-on-chip</subject><subject>temperature compensation</subject><subject>Temperature dependence</subject><subject>Temperature sensors</subject><subject>wide bandwidth</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqzn4ku8cStK20CK2ityUfs7qlJnGTgP33prQHT_MOPO8MPITcApsAMPPwvNmkE864mAieCKHNGRmBUjqCRHyckxFjoCPDGbskV227HVYpNYzIYkrn-zz4kq6yzwo7X9C0DwGrjm6wautA3333RTO66nedb3b4iyVd-2ZI0RrLvuh8XdFlXTfX5MJluxZvTnNM3p4eX9N5tHyZLdLpMiqESLrIMakMgnKgtdCqyJlTKGSinESZlzEzPEGnGMoyA8V5orNYGpfn0sRSsEKMyf3xbhPqnx7bzm7rPlTDS8t1bATXLOEDBUeqCHXbBnS2Cf47C3sLzB6M2YMxezBmT8aGzt2x4xHxHw_cQAziD1SBZgs</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Jouyaeian, Amirhossein</creator><creator>Fan, Qinwen</creator><creator>Zamparette, Roger</creator><creator>Ausserlechner, Udo</creator><creator>Motz, Mario</creator><creator>Makinwa, Kofi A. A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8229-9143</orcidid><orcidid>https://orcid.org/0000-0002-2992-5467</orcidid><orcidid>https://orcid.org/0000-0002-3980-9603</orcidid><orcidid>https://orcid.org/0000-0002-6873-6124</orcidid></search><sort><creationdate>20231001</creationdate><title>A Hybrid Magnetic Current Sensor With a Multiplexed Ripple-Reduction Loop</title><author>Jouyaeian, Amirhossein ; Fan, Qinwen ; Zamparette, Roger ; Ausserlechner, Udo ; Motz, Mario ; Makinwa, Kofi A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-f0459e15f188385cb0f5e3475f4e4bd60927ef50e4da152278a649fbb496430c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CMOS</topic><topic>Coils</topic><topic>Drift</topic><topic>Figure of merit</topic><topic>Galvanic isolation</topic><topic>hybrid current sensors</topic><topic>magnetic current sensing</topic><topic>Magnetic fields</topic><topic>Multiplexing</topic><topic>Plates</topic><topic>Reduction</topic><topic>ripple-reduction loop (RRL)</topic><topic>Ripples</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Signal paths</topic><topic>System-on-chip</topic><topic>temperature compensation</topic><topic>Temperature dependence</topic><topic>Temperature sensors</topic><topic>wide bandwidth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jouyaeian, Amirhossein</creatorcontrib><creatorcontrib>Fan, Qinwen</creatorcontrib><creatorcontrib>Zamparette, Roger</creatorcontrib><creatorcontrib>Ausserlechner, Udo</creatorcontrib><creatorcontrib>Motz, Mario</creatorcontrib><creatorcontrib>Makinwa, Kofi A. A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jouyaeian, Amirhossein</au><au>Fan, Qinwen</au><au>Zamparette, Roger</au><au>Ausserlechner, Udo</au><au>Motz, Mario</au><au>Makinwa, Kofi A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Magnetic Current Sensor With a Multiplexed Ripple-Reduction Loop</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>58</volume><issue>10</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract><![CDATA[This article presents a hybrid magnetic current sensor for galvanically isolated measurements. It consists of a CMOS chip that senses the magnetic field generated by current flowing through a lead-frame-based current rail. Hall plates and coils are used to sense low-frequency (dc to 10 kHz) and high-frequency (10 kHz to 5 MHz) magnetic fields, respectively. With the help of on-chip calibration coils, the biasing current of the Hall plates is trimmed to match the sensitivity of the Hall and coil signal paths. The sensitivity drift of the coil path with temperature is compensated by using temperature-dependent gain-setting resistors, while the drift of the Hall path is compensated by biasing the Hall plates with a proportional-to-absolute-temperature (PTAT) current. The resulting sensitivity drift is less than 9% from -40 <inline-formula> <tex-math notation="LaTeX">^{\circ}</tex-math> </inline-formula>C to 80 <inline-formula> <tex-math notation="LaTeX">^{\circ}</tex-math> </inline-formula>C. The offset of the Hall plates is reduced by the current spinning technique, and the resulting ripple is suppressed by a multiplexed ripple-reduction loop (MMRL). Fabricated in a standard 0.18-<inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>m CMOS process, the current sensor occupies 4.6 mm<inline-formula> <tex-math notation="LaTeX">^{2}</tex-math> </inline-formula> and draws 7.8 mA from a 1.8-V supply. It achieves a gain variation of only <inline-formula> <tex-math notation="LaTeX">\pm</tex-math> </inline-formula>2% in a 5-MHz BW. It also achieves high energy efficiency, with an figure of merit (FoM) of 1.6 fW/Hz.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2023.3273389</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8229-9143</orcidid><orcidid>https://orcid.org/0000-0002-2992-5467</orcidid><orcidid>https://orcid.org/0000-0002-3980-9603</orcidid><orcidid>https://orcid.org/0000-0002-6873-6124</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2023-10, Vol.58 (10), p.1-9
issn 0018-9200
1558-173X
language eng
recordid cdi_proquest_journals_2869328072
source IEEE Electronic Library (IEL)
subjects CMOS
Coils
Drift
Figure of merit
Galvanic isolation
hybrid current sensors
magnetic current sensing
Magnetic fields
Multiplexing
Plates
Reduction
ripple-reduction loop (RRL)
Ripples
Sensitivity
Sensors
Signal paths
System-on-chip
temperature compensation
Temperature dependence
Temperature sensors
wide bandwidth
title A Hybrid Magnetic Current Sensor With a Multiplexed Ripple-Reduction Loop
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A50%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Magnetic%20Current%20Sensor%20With%20a%20Multiplexed%20Ripple-Reduction%20Loop&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Jouyaeian,%20Amirhossein&rft.date=2023-10-01&rft.volume=58&rft.issue=10&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2023.3273389&rft_dat=%3Cproquest_RIE%3E2869328072%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869328072&rft_id=info:pmid/&rft_ieee_id=10129161&rfr_iscdi=true