The Branched Deformations of the Special Lagrangian Submanifolds

In this paper, we investigate the branched deformations of immersed compact special Lagrangian submanifolds. If there exists a nondegenerate Z 2 harmonic 1-form over a special Lagrangian submanifold L , we construct a family of immersed special Lagrangian submanifolds L ~ t , that are diffeomorphic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometric and functional analysis 2023-10, Vol.33 (5), p.1266-1321
1. Verfasser: He, Siqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate the branched deformations of immersed compact special Lagrangian submanifolds. If there exists a nondegenerate Z 2 harmonic 1-form over a special Lagrangian submanifold L , we construct a family of immersed special Lagrangian submanifolds L ~ t , that are diffeomorphic to a branched covering of L and L ~ t converge to 2 L as current. This answers a question suggested by Donaldson (Deformations of multivalued harmonic functions, 2019. arXiv:1912.08274 ). As a corollary, we discover examples of special Lagrangian submanifolds that are rigid in the classical sense but exhibit branched deformations. In conjunction with the work of Abouzaid and Imagi in Nearby special lagrangians, 2021. arXiv:2112.10385 , we derive constraints on the existence of nondegenerate Z 2 harmonic 1-forms.
ISSN:1016-443X
1420-8970
DOI:10.1007/s00039-023-00645-8