Application of Optimum Adaptive Generalized Predictive Control to Green Tea Drying

One of the most frequently used operations in the processing industry is food drying. This is a complex, multiparameter, and nonlinear dynamic system, the degree of nonlinearity of which is determined by the operating range of the drying process. For a dryer to operate efficiently, it must not only...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition and image analysis 2023-09, Vol.33 (3), p.292-299
Hauptverfasser: Fam, K. B., Murashev, P. M., Bogatikov, V. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue 3
container_start_page 292
container_title Pattern recognition and image analysis
container_volume 33
creator Fam, K. B.
Murashev, P. M.
Bogatikov, V. N.
description One of the most frequently used operations in the processing industry is food drying. This is a complex, multiparameter, and nonlinear dynamic system, the degree of nonlinearity of which is determined by the operating range of the drying process. For a dryer to operate efficiently, it must not only be well designed, but the control strategies implemented must also be effective. And the drying process control system must maintain the necessary controlled variables in the face of many disorders that arise in production situations and the uncertainty of the conditions of the drying process. In the article, to improve the quality of process control under uncertainty in the conditions of the drying process, design methods are applied based on the use of a predictive controller for the state of system parameters using the Box–Wilson optimization method and the “experiment planning.” In general, the results of the simulation of the green tea drying process control system show that the model predictive control (MPC) controller is stable and stable in terms of suppressing input disturbance. The control system of the MPC, when implementing the Box–Wilson method for the object model, provides relatively more efficient operation compared to traditional MPC.
doi_str_mv 10.1134/S1054661823030112
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2869267939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869267939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-8a7621e429e6c1b683d55a6878bf7b4102fda2b152a89f5a786803f3d67ca0cc3</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHPq5lkk80eS9UqFCpaz0s2m5SU7WZNtkL99U2t4EE8zWPexwwPoWsgtwAsv3sDwnMhQFJGGAGgJ2gEnPNMUKCnCSc6O_Dn6CLGNSFEQklH6HXS963TanC-w97iRT-4zXaDJ41K6NPgmelMUK37Mg1-CaZx-ns99d0QfIsHj2fBmA4vjcL3Yee61SU6s6qN5upnjtH748Ny-pTNF7Pn6WSeaSrkkElVpN9MTksjNNRCsoZzJWQha1vUORBqG0Vr4FTJ0nJVSCEJs6wRhVZEazZGN8fcPviPrYlDtfbb0KWTFZWipKIoWZlUcFTp4GMMxlZ9cBsVdhWQ6lBd9ae65KFHT0zabmXCb_L_pj0dH28q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869267939</pqid></control><display><type>article</type><title>Application of Optimum Adaptive Generalized Predictive Control to Green Tea Drying</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fam, K. B. ; Murashev, P. M. ; Bogatikov, V. N.</creator><creatorcontrib>Fam, K. B. ; Murashev, P. M. ; Bogatikov, V. N.</creatorcontrib><description>One of the most frequently used operations in the processing industry is food drying. This is a complex, multiparameter, and nonlinear dynamic system, the degree of nonlinearity of which is determined by the operating range of the drying process. For a dryer to operate efficiently, it must not only be well designed, but the control strategies implemented must also be effective. And the drying process control system must maintain the necessary controlled variables in the face of many disorders that arise in production situations and the uncertainty of the conditions of the drying process. In the article, to improve the quality of process control under uncertainty in the conditions of the drying process, design methods are applied based on the use of a predictive controller for the state of system parameters using the Box–Wilson optimization method and the “experiment planning.” In general, the results of the simulation of the green tea drying process control system show that the model predictive control (MPC) controller is stable and stable in terms of suppressing input disturbance. The control system of the MPC, when implementing the Box–Wilson method for the object model, provides relatively more efficient operation compared to traditional MPC.</description><identifier>ISSN: 1054-6618</identifier><identifier>EISSN: 1555-6212</identifier><identifier>DOI: 10.1134/S1054661823030112</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Adaptive control ; Computer Science ; Controllers ; Drying ; Dynamical systems ; Green tea ; Image Processing and Computer Vision ; Nonlinear dynamics ; Nonlinearity ; Optimization ; Pattern Recognition ; Predictive control ; Process controls ; Processing industry ; Selected Conference Papers ; Uncertainty</subject><ispartof>Pattern recognition and image analysis, 2023-09, Vol.33 (3), p.292-299</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 1054-6618, Pattern Recognition and Image Analysis, 2023, Vol. 33, No. 3, pp. 292–299. © Pleiades Publishing, Ltd., 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-8a7621e429e6c1b683d55a6878bf7b4102fda2b152a89f5a786803f3d67ca0cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1054661823030112$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1054661823030112$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Fam, K. B.</creatorcontrib><creatorcontrib>Murashev, P. M.</creatorcontrib><creatorcontrib>Bogatikov, V. N.</creatorcontrib><title>Application of Optimum Adaptive Generalized Predictive Control to Green Tea Drying</title><title>Pattern recognition and image analysis</title><addtitle>Pattern Recognit. Image Anal</addtitle><description>One of the most frequently used operations in the processing industry is food drying. This is a complex, multiparameter, and nonlinear dynamic system, the degree of nonlinearity of which is determined by the operating range of the drying process. For a dryer to operate efficiently, it must not only be well designed, but the control strategies implemented must also be effective. And the drying process control system must maintain the necessary controlled variables in the face of many disorders that arise in production situations and the uncertainty of the conditions of the drying process. In the article, to improve the quality of process control under uncertainty in the conditions of the drying process, design methods are applied based on the use of a predictive controller for the state of system parameters using the Box–Wilson optimization method and the “experiment planning.” In general, the results of the simulation of the green tea drying process control system show that the model predictive control (MPC) controller is stable and stable in terms of suppressing input disturbance. The control system of the MPC, when implementing the Box–Wilson method for the object model, provides relatively more efficient operation compared to traditional MPC.</description><subject>Adaptive control</subject><subject>Computer Science</subject><subject>Controllers</subject><subject>Drying</subject><subject>Dynamical systems</subject><subject>Green tea</subject><subject>Image Processing and Computer Vision</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>Pattern Recognition</subject><subject>Predictive control</subject><subject>Process controls</subject><subject>Processing industry</subject><subject>Selected Conference Papers</subject><subject>Uncertainty</subject><issn>1054-6618</issn><issn>1555-6212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf4AbwHPq5lkk80eS9UqFCpaz0s2m5SU7WZNtkL99U2t4EE8zWPexwwPoWsgtwAsv3sDwnMhQFJGGAGgJ2gEnPNMUKCnCSc6O_Dn6CLGNSFEQklH6HXS963TanC-w97iRT-4zXaDJ41K6NPgmelMUK37Mg1-CaZx-ns99d0QfIsHj2fBmA4vjcL3Yee61SU6s6qN5upnjtH748Ny-pTNF7Pn6WSeaSrkkElVpN9MTksjNNRCsoZzJWQha1vUORBqG0Vr4FTJ0nJVSCEJs6wRhVZEazZGN8fcPviPrYlDtfbb0KWTFZWipKIoWZlUcFTp4GMMxlZ9cBsVdhWQ6lBd9ae65KFHT0zabmXCb_L_pj0dH28q</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Fam, K. B.</creator><creator>Murashev, P. M.</creator><creator>Bogatikov, V. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230901</creationdate><title>Application of Optimum Adaptive Generalized Predictive Control to Green Tea Drying</title><author>Fam, K. B. ; Murashev, P. M. ; Bogatikov, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-8a7621e429e6c1b683d55a6878bf7b4102fda2b152a89f5a786803f3d67ca0cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive control</topic><topic>Computer Science</topic><topic>Controllers</topic><topic>Drying</topic><topic>Dynamical systems</topic><topic>Green tea</topic><topic>Image Processing and Computer Vision</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>Pattern Recognition</topic><topic>Predictive control</topic><topic>Process controls</topic><topic>Processing industry</topic><topic>Selected Conference Papers</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fam, K. B.</creatorcontrib><creatorcontrib>Murashev, P. M.</creatorcontrib><creatorcontrib>Bogatikov, V. N.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition and image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fam, K. B.</au><au>Murashev, P. M.</au><au>Bogatikov, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Optimum Adaptive Generalized Predictive Control to Green Tea Drying</atitle><jtitle>Pattern recognition and image analysis</jtitle><stitle>Pattern Recognit. Image Anal</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>33</volume><issue>3</issue><spage>292</spage><epage>299</epage><pages>292-299</pages><issn>1054-6618</issn><eissn>1555-6212</eissn><abstract>One of the most frequently used operations in the processing industry is food drying. This is a complex, multiparameter, and nonlinear dynamic system, the degree of nonlinearity of which is determined by the operating range of the drying process. For a dryer to operate efficiently, it must not only be well designed, but the control strategies implemented must also be effective. And the drying process control system must maintain the necessary controlled variables in the face of many disorders that arise in production situations and the uncertainty of the conditions of the drying process. In the article, to improve the quality of process control under uncertainty in the conditions of the drying process, design methods are applied based on the use of a predictive controller for the state of system parameters using the Box–Wilson optimization method and the “experiment planning.” In general, the results of the simulation of the green tea drying process control system show that the model predictive control (MPC) controller is stable and stable in terms of suppressing input disturbance. The control system of the MPC, when implementing the Box–Wilson method for the object model, provides relatively more efficient operation compared to traditional MPC.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1054661823030112</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-6618
ispartof Pattern recognition and image analysis, 2023-09, Vol.33 (3), p.292-299
issn 1054-6618
1555-6212
language eng
recordid cdi_proquest_journals_2869267939
source SpringerLink Journals - AutoHoldings
subjects Adaptive control
Computer Science
Controllers
Drying
Dynamical systems
Green tea
Image Processing and Computer Vision
Nonlinear dynamics
Nonlinearity
Optimization
Pattern Recognition
Predictive control
Process controls
Processing industry
Selected Conference Papers
Uncertainty
title Application of Optimum Adaptive Generalized Predictive Control to Green Tea Drying
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A17%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Optimum%20Adaptive%20Generalized%20Predictive%20Control%20to%20Green%20Tea%20Drying&rft.jtitle=Pattern%20recognition%20and%20image%20analysis&rft.au=Fam,%20K.%20B.&rft.date=2023-09-01&rft.volume=33&rft.issue=3&rft.spage=292&rft.epage=299&rft.pages=292-299&rft.issn=1054-6618&rft.eissn=1555-6212&rft_id=info:doi/10.1134/S1054661823030112&rft_dat=%3Cproquest_cross%3E2869267939%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869267939&rft_id=info:pmid/&rfr_iscdi=true