Role of viscosity in turbulent drop break-up

We investigate drop break-up morphology, occurrence, time and size distribution, through large ensembles of high-fidelity direct-numerical simulations of drops in homogeneous isotropic turbulence, spanning a wide range of parameters in terms of the Weber number $We$, viscosity ratio between the drop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2023-09, Vol.972, Article A11
Hauptverfasser: Farsoiya, Palas Kumar, Liu, Zehua, Daiss, Andreas, Fox, Rodney O., Deike, Luc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 972
creator Farsoiya, Palas Kumar
Liu, Zehua
Daiss, Andreas
Fox, Rodney O.
Deike, Luc
description We investigate drop break-up morphology, occurrence, time and size distribution, through large ensembles of high-fidelity direct-numerical simulations of drops in homogeneous isotropic turbulence, spanning a wide range of parameters in terms of the Weber number $We$, viscosity ratio between the drop and the carrier flow $\mu _r=\mu _d/\mu _l$, where d is the drop diameter, and Reynolds ($Re$) number. For $\mu _r \leq 20$, we find a nearly constant critical $We$, while it increases with $\mu _r$ (and $Re$) when $\mu _r > 20$, and the transition can be described in terms of a drop Reynolds number. The break-up time is delayed when $\mu _r$ increases and is a function of distance to criticality. The first break-up child-size distributions for $\mu _r \leq 20$ transition from M to U shape when the distance to criticality is increased. At high $\mu _r$, the shape of the distribution is modified. The first break-up child-size distribution gives only limited information on the fragmentation dynamics, as the subsequent break-up sequence is controlled by the drop geometry and viscosity. At high $We$, a $d^{-3/2}$ size distribution is observed for $\mu _r \leq 20$, which can be explained by capillary-driven processes, while for $\mu _r > 20$, almost all drops formed by the fragmentation process are at the smallest scale, controlled by the diameter of the very extended filament, which exhibits a snake-like shape prior to break-up.
doi_str_mv 10.1017/jfm.2023.684
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2869166700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2023_684</cupid><sourcerecordid>2869166700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-dbc438bca93aa5e091214dbc4dc71a0b71092cbee6d9254a39dedb1ca8e2b8e83</originalsourceid><addsrcrecordid>eNptkE1Lw0AURQdRMFZ3_oCA2ya-NzOdZJZStAoFQXQ9zFcktc3EmUTovzelBTeuLjzOuxcOIbcIJQJW95tmV1KgrBQ1PyMZciGLSvDFOckAKC0QKVySq5Q2AMhAVhmZv4Wtz0OT_7TJhtQO-7zt8mGMZtz6bshdDH1uotdfxdhfk4tGb5O_OeWMfDw9vi-fi_Xr6mX5sC4s4zAUzljOamO1ZFovPEikyA9HZyvUYCoESa3xXjhJF1wz6bwzaHXtqal9zWbk7tjbx_A9-jSoTRhjN00qWguJQlQAEzU_UjaGlKJvVB_bnY57haAOPtTkQx18qMnHhJcnXO9MbN2n_2v99-EXdmNh_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869166700</pqid></control><display><type>article</type><title>Role of viscosity in turbulent drop break-up</title><source>Cambridge Journals</source><creator>Farsoiya, Palas Kumar ; Liu, Zehua ; Daiss, Andreas ; Fox, Rodney O. ; Deike, Luc</creator><creatorcontrib>Farsoiya, Palas Kumar ; Liu, Zehua ; Daiss, Andreas ; Fox, Rodney O. ; Deike, Luc</creatorcontrib><description>We investigate drop break-up morphology, occurrence, time and size distribution, through large ensembles of high-fidelity direct-numerical simulations of drops in homogeneous isotropic turbulence, spanning a wide range of parameters in terms of the Weber number $We$, viscosity ratio between the drop and the carrier flow $\mu _r=\mu _d/\mu _l$, where d is the drop diameter, and Reynolds ($Re$) number. For $\mu _r \leq 20$, we find a nearly constant critical $We$, while it increases with $\mu _r$ (and $Re$) when $\mu _r &gt; 20$, and the transition can be described in terms of a drop Reynolds number. The break-up time is delayed when $\mu _r$ increases and is a function of distance to criticality. The first break-up child-size distributions for $\mu _r \leq 20$ transition from M to U shape when the distance to criticality is increased. At high $\mu _r$, the shape of the distribution is modified. The first break-up child-size distribution gives only limited information on the fragmentation dynamics, as the subsequent break-up sequence is controlled by the drop geometry and viscosity. At high $We$, a $d^{-3/2}$ size distribution is observed for $\mu _r \leq 20$, which can be explained by capillary-driven processes, while for $\mu _r &gt; 20$, almost all drops formed by the fragmentation process are at the smallest scale, controlled by the diameter of the very extended filament, which exhibits a snake-like shape prior to break-up.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2023.684</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Distance ; Fluid flow ; Fragmentation ; Isotropic turbulence ; JFM Papers ; Reynolds number ; Shape ; Simulation ; Size distribution ; Turbulence ; Viscosity ; Viscosity ratio ; Weber number</subject><ispartof>Journal of fluid mechanics, 2023-09, Vol.972, Article A11</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press.</rights><rights>The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-dbc438bca93aa5e091214dbc4dc71a0b71092cbee6d9254a39dedb1ca8e2b8e83</citedby><cites>FETCH-LOGICAL-c340t-dbc438bca93aa5e091214dbc4dc71a0b71092cbee6d9254a39dedb1ca8e2b8e83</cites><orcidid>0000-0002-2604-2693 ; 0000-0003-4784-3470 ; 0000-0002-4644-9909 ; 0000-0003-1944-1861 ; 0000-0003-3393-8807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112023006845/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>Farsoiya, Palas Kumar</creatorcontrib><creatorcontrib>Liu, Zehua</creatorcontrib><creatorcontrib>Daiss, Andreas</creatorcontrib><creatorcontrib>Fox, Rodney O.</creatorcontrib><creatorcontrib>Deike, Luc</creatorcontrib><title>Role of viscosity in turbulent drop break-up</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We investigate drop break-up morphology, occurrence, time and size distribution, through large ensembles of high-fidelity direct-numerical simulations of drops in homogeneous isotropic turbulence, spanning a wide range of parameters in terms of the Weber number $We$, viscosity ratio between the drop and the carrier flow $\mu _r=\mu _d/\mu _l$, where d is the drop diameter, and Reynolds ($Re$) number. For $\mu _r \leq 20$, we find a nearly constant critical $We$, while it increases with $\mu _r$ (and $Re$) when $\mu _r &gt; 20$, and the transition can be described in terms of a drop Reynolds number. The break-up time is delayed when $\mu _r$ increases and is a function of distance to criticality. The first break-up child-size distributions for $\mu _r \leq 20$ transition from M to U shape when the distance to criticality is increased. At high $\mu _r$, the shape of the distribution is modified. The first break-up child-size distribution gives only limited information on the fragmentation dynamics, as the subsequent break-up sequence is controlled by the drop geometry and viscosity. At high $We$, a $d^{-3/2}$ size distribution is observed for $\mu _r \leq 20$, which can be explained by capillary-driven processes, while for $\mu _r &gt; 20$, almost all drops formed by the fragmentation process are at the smallest scale, controlled by the diameter of the very extended filament, which exhibits a snake-like shape prior to break-up.</description><subject>Distance</subject><subject>Fluid flow</subject><subject>Fragmentation</subject><subject>Isotropic turbulence</subject><subject>JFM Papers</subject><subject>Reynolds number</subject><subject>Shape</subject><subject>Simulation</subject><subject>Size distribution</subject><subject>Turbulence</subject><subject>Viscosity</subject><subject>Viscosity ratio</subject><subject>Weber number</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1Lw0AURQdRMFZ3_oCA2ya-NzOdZJZStAoFQXQ9zFcktc3EmUTovzelBTeuLjzOuxcOIbcIJQJW95tmV1KgrBQ1PyMZciGLSvDFOckAKC0QKVySq5Q2AMhAVhmZv4Wtz0OT_7TJhtQO-7zt8mGMZtz6bshdDH1uotdfxdhfk4tGb5O_OeWMfDw9vi-fi_Xr6mX5sC4s4zAUzljOamO1ZFovPEikyA9HZyvUYCoESa3xXjhJF1wz6bwzaHXtqal9zWbk7tjbx_A9-jSoTRhjN00qWguJQlQAEzU_UjaGlKJvVB_bnY57haAOPtTkQx18qMnHhJcnXO9MbN2n_2v99-EXdmNh_w</recordid><startdate>20230927</startdate><enddate>20230927</enddate><creator>Farsoiya, Palas Kumar</creator><creator>Liu, Zehua</creator><creator>Daiss, Andreas</creator><creator>Fox, Rodney O.</creator><creator>Deike, Luc</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-2604-2693</orcidid><orcidid>https://orcid.org/0000-0003-4784-3470</orcidid><orcidid>https://orcid.org/0000-0002-4644-9909</orcidid><orcidid>https://orcid.org/0000-0003-1944-1861</orcidid><orcidid>https://orcid.org/0000-0003-3393-8807</orcidid></search><sort><creationdate>20230927</creationdate><title>Role of viscosity in turbulent drop break-up</title><author>Farsoiya, Palas Kumar ; Liu, Zehua ; Daiss, Andreas ; Fox, Rodney O. ; Deike, Luc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-dbc438bca93aa5e091214dbc4dc71a0b71092cbee6d9254a39dedb1ca8e2b8e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Distance</topic><topic>Fluid flow</topic><topic>Fragmentation</topic><topic>Isotropic turbulence</topic><topic>JFM Papers</topic><topic>Reynolds number</topic><topic>Shape</topic><topic>Simulation</topic><topic>Size distribution</topic><topic>Turbulence</topic><topic>Viscosity</topic><topic>Viscosity ratio</topic><topic>Weber number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farsoiya, Palas Kumar</creatorcontrib><creatorcontrib>Liu, Zehua</creatorcontrib><creatorcontrib>Daiss, Andreas</creatorcontrib><creatorcontrib>Fox, Rodney O.</creatorcontrib><creatorcontrib>Deike, Luc</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farsoiya, Palas Kumar</au><au>Liu, Zehua</au><au>Daiss, Andreas</au><au>Fox, Rodney O.</au><au>Deike, Luc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of viscosity in turbulent drop break-up</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2023-09-27</date><risdate>2023</risdate><volume>972</volume><artnum>A11</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We investigate drop break-up morphology, occurrence, time and size distribution, through large ensembles of high-fidelity direct-numerical simulations of drops in homogeneous isotropic turbulence, spanning a wide range of parameters in terms of the Weber number $We$, viscosity ratio between the drop and the carrier flow $\mu _r=\mu _d/\mu _l$, where d is the drop diameter, and Reynolds ($Re$) number. For $\mu _r \leq 20$, we find a nearly constant critical $We$, while it increases with $\mu _r$ (and $Re$) when $\mu _r &gt; 20$, and the transition can be described in terms of a drop Reynolds number. The break-up time is delayed when $\mu _r$ increases and is a function of distance to criticality. The first break-up child-size distributions for $\mu _r \leq 20$ transition from M to U shape when the distance to criticality is increased. At high $\mu _r$, the shape of the distribution is modified. The first break-up child-size distribution gives only limited information on the fragmentation dynamics, as the subsequent break-up sequence is controlled by the drop geometry and viscosity. At high $We$, a $d^{-3/2}$ size distribution is observed for $\mu _r \leq 20$, which can be explained by capillary-driven processes, while for $\mu _r &gt; 20$, almost all drops formed by the fragmentation process are at the smallest scale, controlled by the diameter of the very extended filament, which exhibits a snake-like shape prior to break-up.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2023.684</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2604-2693</orcidid><orcidid>https://orcid.org/0000-0003-4784-3470</orcidid><orcidid>https://orcid.org/0000-0002-4644-9909</orcidid><orcidid>https://orcid.org/0000-0003-1944-1861</orcidid><orcidid>https://orcid.org/0000-0003-3393-8807</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2023-09, Vol.972, Article A11
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2869166700
source Cambridge Journals
subjects Distance
Fluid flow
Fragmentation
Isotropic turbulence
JFM Papers
Reynolds number
Shape
Simulation
Size distribution
Turbulence
Viscosity
Viscosity ratio
Weber number
title Role of viscosity in turbulent drop break-up
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A05%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20viscosity%20in%20turbulent%20drop%20break-up&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Farsoiya,%20Palas%20Kumar&rft.date=2023-09-27&rft.volume=972&rft.artnum=A11&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2023.684&rft_dat=%3Cproquest_cross%3E2869166700%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869166700&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2023_684&rfr_iscdi=true