Numerical solution of fractional delay Volterra integro-differential equations by Bernstein polynomials
We apply spectral collocation and Galerkin methods with shifted orthonormal Bernstein polynomials (SOBPs) to a class of fractional delay Volterra integro-differential equations (FDVIDEs). To this end, we first obtain the SOBPs operational matrix for fractional derivatives in the Caputo sense and con...
Gespeichert in:
Veröffentlicht in: | Mathematical Sciences 2023-12, Vol.17 (4), p.455-466 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 466 |
---|---|
container_issue | 4 |
container_start_page | 455 |
container_title | Mathematical Sciences |
container_volume | 17 |
creator | Mansouri, L. Azimzadeh, Z. |
description | We apply spectral collocation and Galerkin methods with shifted orthonormal Bernstein polynomials (SOBPs) to a class of fractional delay Volterra integro-differential equations (FDVIDEs). To this end, we first obtain the SOBPs operational matrix for fractional derivatives in the Caputo sense and convert the original equation to a system of algebraic equations. In addition, the convergence analysis of the method is presented. Some examples are provided to investigate the efficiency of the proposed methods. In each example, the Galerkin method and the collocation method are compared with other methods in terms of accuracy and CPU time. The numerical results show the efficiency and validity of the method as well as the suitability of the error bound. They also show that spectral methods yield acceptable approximate solutions even on long intervals. |
doi_str_mv | 10.1007/s40096-022-00463-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2869047984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A766760095</galeid><sourcerecordid>A766760095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-c1f7be4e161276567e782d3eaa17b78aaa41df99058f459258ba0535b794184d3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhk1oIEuaP5CTIWel-pZ83IZ-BEJzSXsVsj1atHilXck-7L_vbFzoLdJhhuF5B716m-ae0UdGqflSJaWdJpRzQqnUgoirZsO5YsRIpT9hT6klTKjuprmrdU_xGNNRqTbN7tdygBIHP7U1T8scc2pzaEPxw6XH8QiTP7d_8jRDKb6NaYZdyWSMIUCBNEdk4LT4C17b_tx-hZLqDDG1xzydUz4gUT831wEL3P2rt83v79_enn6Sl9cfz0_bFzIIZWcysGB6kMA040YrbcBYPgrwnpneWO-9ZGPoOqpskKrjyvaeKqF600lm5Shum4d177Hk0wJ1dvu8FPRRHbcaPZvOSqQeV2rnJ3AxhTyjYbwjHOKQE4SI863R2mj8W4UCvgqGkmstENyxxIMvZ8eou4Tg1hAchuDeQ3ACRWIVVYTTDsr_t3yg-gucvYrW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869047984</pqid></control><display><type>article</type><title>Numerical solution of fractional delay Volterra integro-differential equations by Bernstein polynomials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mansouri, L. ; Azimzadeh, Z.</creator><creatorcontrib>Mansouri, L. ; Azimzadeh, Z.</creatorcontrib><description>We apply spectral collocation and Galerkin methods with shifted orthonormal Bernstein polynomials (SOBPs) to a class of fractional delay Volterra integro-differential equations (FDVIDEs). To this end, we first obtain the SOBPs operational matrix for fractional derivatives in the Caputo sense and convert the original equation to a system of algebraic equations. In addition, the convergence analysis of the method is presented. Some examples are provided to investigate the efficiency of the proposed methods. In each example, the Galerkin method and the collocation method are compared with other methods in terms of accuracy and CPU time. The numerical results show the efficiency and validity of the method as well as the suitability of the error bound. They also show that spectral methods yield acceptable approximate solutions even on long intervals.</description><identifier>ISSN: 2008-1359</identifier><identifier>EISSN: 2251-7456</identifier><identifier>DOI: 10.1007/s40096-022-00463-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Approximation ; Calculus ; Collocation methods ; Comparative analysis ; Differential equations ; Efficiency ; Galerkin method ; Mathematics ; Mathematics and Statistics ; Methods ; Numerical analysis ; Original Research ; Polynomials ; Science ; Spectral methods ; Volterra integral equations</subject><ispartof>Mathematical Sciences, 2023-12, Vol.17 (4), p.455-466</ispartof><rights>The Author(s), under exclusive licence to Islamic Azad University 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s), under exclusive licence to Islamic Azad University 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-c1f7be4e161276567e782d3eaa17b78aaa41df99058f459258ba0535b794184d3</citedby><cites>FETCH-LOGICAL-c358t-c1f7be4e161276567e782d3eaa17b78aaa41df99058f459258ba0535b794184d3</cites><orcidid>0000-0003-1198-1740</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40096-022-00463-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40096-022-00463-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mansouri, L.</creatorcontrib><creatorcontrib>Azimzadeh, Z.</creatorcontrib><title>Numerical solution of fractional delay Volterra integro-differential equations by Bernstein polynomials</title><title>Mathematical Sciences</title><addtitle>Math Sci</addtitle><description>We apply spectral collocation and Galerkin methods with shifted orthonormal Bernstein polynomials (SOBPs) to a class of fractional delay Volterra integro-differential equations (FDVIDEs). To this end, we first obtain the SOBPs operational matrix for fractional derivatives in the Caputo sense and convert the original equation to a system of algebraic equations. In addition, the convergence analysis of the method is presented. Some examples are provided to investigate the efficiency of the proposed methods. In each example, the Galerkin method and the collocation method are compared with other methods in terms of accuracy and CPU time. The numerical results show the efficiency and validity of the method as well as the suitability of the error bound. They also show that spectral methods yield acceptable approximate solutions even on long intervals.</description><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Calculus</subject><subject>Collocation methods</subject><subject>Comparative analysis</subject><subject>Differential equations</subject><subject>Efficiency</subject><subject>Galerkin method</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Original Research</subject><subject>Polynomials</subject><subject>Science</subject><subject>Spectral methods</subject><subject>Volterra integral equations</subject><issn>2008-1359</issn><issn>2251-7456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU1r3DAQhk1oIEuaP5CTIWel-pZ83IZ-BEJzSXsVsj1atHilXck-7L_vbFzoLdJhhuF5B716m-ae0UdGqflSJaWdJpRzQqnUgoirZsO5YsRIpT9hT6klTKjuprmrdU_xGNNRqTbN7tdygBIHP7U1T8scc2pzaEPxw6XH8QiTP7d_8jRDKb6NaYZdyWSMIUCBNEdk4LT4C17b_tx-hZLqDDG1xzydUz4gUT831wEL3P2rt83v79_enn6Sl9cfz0_bFzIIZWcysGB6kMA040YrbcBYPgrwnpneWO-9ZGPoOqpskKrjyvaeKqF600lm5Shum4d177Hk0wJ1dvu8FPRRHbcaPZvOSqQeV2rnJ3AxhTyjYbwjHOKQE4SI863R2mj8W4UCvgqGkmstENyxxIMvZ8eou4Tg1hAchuDeQ3ACRWIVVYTTDsr_t3yg-gucvYrW</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Mansouri, L.</creator><creator>Azimzadeh, Z.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1198-1740</orcidid></search><sort><creationdate>20231201</creationdate><title>Numerical solution of fractional delay Volterra integro-differential equations by Bernstein polynomials</title><author>Mansouri, L. ; Azimzadeh, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-c1f7be4e161276567e782d3eaa17b78aaa41df99058f459258ba0535b794184d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Calculus</topic><topic>Collocation methods</topic><topic>Comparative analysis</topic><topic>Differential equations</topic><topic>Efficiency</topic><topic>Galerkin method</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Original Research</topic><topic>Polynomials</topic><topic>Science</topic><topic>Spectral methods</topic><topic>Volterra integral equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mansouri, L.</creatorcontrib><creatorcontrib>Azimzadeh, Z.</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mansouri, L.</au><au>Azimzadeh, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of fractional delay Volterra integro-differential equations by Bernstein polynomials</atitle><jtitle>Mathematical Sciences</jtitle><stitle>Math Sci</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>17</volume><issue>4</issue><spage>455</spage><epage>466</epage><pages>455-466</pages><issn>2008-1359</issn><eissn>2251-7456</eissn><abstract>We apply spectral collocation and Galerkin methods with shifted orthonormal Bernstein polynomials (SOBPs) to a class of fractional delay Volterra integro-differential equations (FDVIDEs). To this end, we first obtain the SOBPs operational matrix for fractional derivatives in the Caputo sense and convert the original equation to a system of algebraic equations. In addition, the convergence analysis of the method is presented. Some examples are provided to investigate the efficiency of the proposed methods. In each example, the Galerkin method and the collocation method are compared with other methods in terms of accuracy and CPU time. The numerical results show the efficiency and validity of the method as well as the suitability of the error bound. They also show that spectral methods yield acceptable approximate solutions even on long intervals.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40096-022-00463-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1198-1740</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2008-1359 |
ispartof | Mathematical Sciences, 2023-12, Vol.17 (4), p.455-466 |
issn | 2008-1359 2251-7456 |
language | eng |
recordid | cdi_proquest_journals_2869047984 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Approximation Calculus Collocation methods Comparative analysis Differential equations Efficiency Galerkin method Mathematics Mathematics and Statistics Methods Numerical analysis Original Research Polynomials Science Spectral methods Volterra integral equations |
title | Numerical solution of fractional delay Volterra integro-differential equations by Bernstein polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A00%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20fractional%20delay%20Volterra%20integro-differential%20equations%20by%20Bernstein%20polynomials&rft.jtitle=Mathematical%20Sciences&rft.au=Mansouri,%20L.&rft.date=2023-12-01&rft.volume=17&rft.issue=4&rft.spage=455&rft.epage=466&rft.pages=455-466&rft.issn=2008-1359&rft.eissn=2251-7456&rft_id=info:doi/10.1007/s40096-022-00463-3&rft_dat=%3Cgale_proqu%3EA766760095%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869047984&rft_id=info:pmid/&rft_galeid=A766760095&rfr_iscdi=true |