Numerical solution of fractional delay Volterra integro-differential equations by Bernstein polynomials

We apply spectral collocation and Galerkin methods with shifted orthonormal Bernstein polynomials (SOBPs) to a class of fractional delay Volterra integro-differential equations (FDVIDEs). To this end, we first obtain the SOBPs operational matrix for fractional derivatives in the Caputo sense and con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Sciences 2023-12, Vol.17 (4), p.455-466
Hauptverfasser: Mansouri, L., Azimzadeh, Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 466
container_issue 4
container_start_page 455
container_title Mathematical Sciences
container_volume 17
creator Mansouri, L.
Azimzadeh, Z.
description We apply spectral collocation and Galerkin methods with shifted orthonormal Bernstein polynomials (SOBPs) to a class of fractional delay Volterra integro-differential equations (FDVIDEs). To this end, we first obtain the SOBPs operational matrix for fractional derivatives in the Caputo sense and convert the original equation to a system of algebraic equations. In addition, the convergence analysis of the method is presented. Some examples are provided to investigate the efficiency of the proposed methods. In each example, the Galerkin method and the collocation method are compared with other methods in terms of accuracy and CPU time. The numerical results show the efficiency and validity of the method as well as the suitability of the error bound. They also show that spectral methods yield acceptable approximate solutions even on long intervals.
doi_str_mv 10.1007/s40096-022-00463-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2869047984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A766760095</galeid><sourcerecordid>A766760095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-c1f7be4e161276567e782d3eaa17b78aaa41df99058f459258ba0535b794184d3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhk1oIEuaP5CTIWel-pZ83IZ-BEJzSXsVsj1atHilXck-7L_vbFzoLdJhhuF5B716m-ae0UdGqflSJaWdJpRzQqnUgoirZsO5YsRIpT9hT6klTKjuprmrdU_xGNNRqTbN7tdygBIHP7U1T8scc2pzaEPxw6XH8QiTP7d_8jRDKb6NaYZdyWSMIUCBNEdk4LT4C17b_tx-hZLqDDG1xzydUz4gUT831wEL3P2rt83v79_enn6Sl9cfz0_bFzIIZWcysGB6kMA040YrbcBYPgrwnpneWO-9ZGPoOqpskKrjyvaeKqF600lm5Shum4d177Hk0wJ1dvu8FPRRHbcaPZvOSqQeV2rnJ3AxhTyjYbwjHOKQE4SI863R2mj8W4UCvgqGkmstENyxxIMvZ8eou4Tg1hAchuDeQ3ACRWIVVYTTDsr_t3yg-gucvYrW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869047984</pqid></control><display><type>article</type><title>Numerical solution of fractional delay Volterra integro-differential equations by Bernstein polynomials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mansouri, L. ; Azimzadeh, Z.</creator><creatorcontrib>Mansouri, L. ; Azimzadeh, Z.</creatorcontrib><description>We apply spectral collocation and Galerkin methods with shifted orthonormal Bernstein polynomials (SOBPs) to a class of fractional delay Volterra integro-differential equations (FDVIDEs). To this end, we first obtain the SOBPs operational matrix for fractional derivatives in the Caputo sense and convert the original equation to a system of algebraic equations. In addition, the convergence analysis of the method is presented. Some examples are provided to investigate the efficiency of the proposed methods. In each example, the Galerkin method and the collocation method are compared with other methods in terms of accuracy and CPU time. The numerical results show the efficiency and validity of the method as well as the suitability of the error bound. They also show that spectral methods yield acceptable approximate solutions even on long intervals.</description><identifier>ISSN: 2008-1359</identifier><identifier>EISSN: 2251-7456</identifier><identifier>DOI: 10.1007/s40096-022-00463-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Approximation ; Calculus ; Collocation methods ; Comparative analysis ; Differential equations ; Efficiency ; Galerkin method ; Mathematics ; Mathematics and Statistics ; Methods ; Numerical analysis ; Original Research ; Polynomials ; Science ; Spectral methods ; Volterra integral equations</subject><ispartof>Mathematical Sciences, 2023-12, Vol.17 (4), p.455-466</ispartof><rights>The Author(s), under exclusive licence to Islamic Azad University 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s), under exclusive licence to Islamic Azad University 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-c1f7be4e161276567e782d3eaa17b78aaa41df99058f459258ba0535b794184d3</citedby><cites>FETCH-LOGICAL-c358t-c1f7be4e161276567e782d3eaa17b78aaa41df99058f459258ba0535b794184d3</cites><orcidid>0000-0003-1198-1740</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40096-022-00463-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40096-022-00463-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mansouri, L.</creatorcontrib><creatorcontrib>Azimzadeh, Z.</creatorcontrib><title>Numerical solution of fractional delay Volterra integro-differential equations by Bernstein polynomials</title><title>Mathematical Sciences</title><addtitle>Math Sci</addtitle><description>We apply spectral collocation and Galerkin methods with shifted orthonormal Bernstein polynomials (SOBPs) to a class of fractional delay Volterra integro-differential equations (FDVIDEs). To this end, we first obtain the SOBPs operational matrix for fractional derivatives in the Caputo sense and convert the original equation to a system of algebraic equations. In addition, the convergence analysis of the method is presented. Some examples are provided to investigate the efficiency of the proposed methods. In each example, the Galerkin method and the collocation method are compared with other methods in terms of accuracy and CPU time. The numerical results show the efficiency and validity of the method as well as the suitability of the error bound. They also show that spectral methods yield acceptable approximate solutions even on long intervals.</description><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Calculus</subject><subject>Collocation methods</subject><subject>Comparative analysis</subject><subject>Differential equations</subject><subject>Efficiency</subject><subject>Galerkin method</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Original Research</subject><subject>Polynomials</subject><subject>Science</subject><subject>Spectral methods</subject><subject>Volterra integral equations</subject><issn>2008-1359</issn><issn>2251-7456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU1r3DAQhk1oIEuaP5CTIWel-pZ83IZ-BEJzSXsVsj1atHilXck-7L_vbFzoLdJhhuF5B716m-ae0UdGqflSJaWdJpRzQqnUgoirZsO5YsRIpT9hT6klTKjuprmrdU_xGNNRqTbN7tdygBIHP7U1T8scc2pzaEPxw6XH8QiTP7d_8jRDKb6NaYZdyWSMIUCBNEdk4LT4C17b_tx-hZLqDDG1xzydUz4gUT831wEL3P2rt83v79_enn6Sl9cfz0_bFzIIZWcysGB6kMA040YrbcBYPgrwnpneWO-9ZGPoOqpskKrjyvaeKqF600lm5Shum4d177Hk0wJ1dvu8FPRRHbcaPZvOSqQeV2rnJ3AxhTyjYbwjHOKQE4SI863R2mj8W4UCvgqGkmstENyxxIMvZ8eou4Tg1hAchuDeQ3ACRWIVVYTTDsr_t3yg-gucvYrW</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Mansouri, L.</creator><creator>Azimzadeh, Z.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1198-1740</orcidid></search><sort><creationdate>20231201</creationdate><title>Numerical solution of fractional delay Volterra integro-differential equations by Bernstein polynomials</title><author>Mansouri, L. ; Azimzadeh, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-c1f7be4e161276567e782d3eaa17b78aaa41df99058f459258ba0535b794184d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Calculus</topic><topic>Collocation methods</topic><topic>Comparative analysis</topic><topic>Differential equations</topic><topic>Efficiency</topic><topic>Galerkin method</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Original Research</topic><topic>Polynomials</topic><topic>Science</topic><topic>Spectral methods</topic><topic>Volterra integral equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mansouri, L.</creatorcontrib><creatorcontrib>Azimzadeh, Z.</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mansouri, L.</au><au>Azimzadeh, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of fractional delay Volterra integro-differential equations by Bernstein polynomials</atitle><jtitle>Mathematical Sciences</jtitle><stitle>Math Sci</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>17</volume><issue>4</issue><spage>455</spage><epage>466</epage><pages>455-466</pages><issn>2008-1359</issn><eissn>2251-7456</eissn><abstract>We apply spectral collocation and Galerkin methods with shifted orthonormal Bernstein polynomials (SOBPs) to a class of fractional delay Volterra integro-differential equations (FDVIDEs). To this end, we first obtain the SOBPs operational matrix for fractional derivatives in the Caputo sense and convert the original equation to a system of algebraic equations. In addition, the convergence analysis of the method is presented. Some examples are provided to investigate the efficiency of the proposed methods. In each example, the Galerkin method and the collocation method are compared with other methods in terms of accuracy and CPU time. The numerical results show the efficiency and validity of the method as well as the suitability of the error bound. They also show that spectral methods yield acceptable approximate solutions even on long intervals.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40096-022-00463-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1198-1740</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2008-1359
ispartof Mathematical Sciences, 2023-12, Vol.17 (4), p.455-466
issn 2008-1359
2251-7456
language eng
recordid cdi_proquest_journals_2869047984
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Approximation
Calculus
Collocation methods
Comparative analysis
Differential equations
Efficiency
Galerkin method
Mathematics
Mathematics and Statistics
Methods
Numerical analysis
Original Research
Polynomials
Science
Spectral methods
Volterra integral equations
title Numerical solution of fractional delay Volterra integro-differential equations by Bernstein polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A00%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20fractional%20delay%20Volterra%20integro-differential%20equations%20by%20Bernstein%20polynomials&rft.jtitle=Mathematical%20Sciences&rft.au=Mansouri,%20L.&rft.date=2023-12-01&rft.volume=17&rft.issue=4&rft.spage=455&rft.epage=466&rft.pages=455-466&rft.issn=2008-1359&rft.eissn=2251-7456&rft_id=info:doi/10.1007/s40096-022-00463-3&rft_dat=%3Cgale_proqu%3EA766760095%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869047984&rft_id=info:pmid/&rft_galeid=A766760095&rfr_iscdi=true