Interfacial defect healing of In2S3/Sb2(S,Se)3 heterojunction solar cells with a novel wide-bandgap InOCl passivator

In2S3 has been regarded as a promising nontoxic alternative to CdS as an n-type electron transporting layer (ETL) for environmentally friendly antimony chalcogenide solar cells. However, the high-density of vacancy defects in In2S3 cause severe interfacial charge recombination in optoelectronic devi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-09, Vol.11 (37), p.19914-19924
Hauptverfasser: Wang, Changxue, Li, Dongdong, Mao, Xiaoli, Wan, Lei, Cheng, Zhen, Zhu, Jun, Hoye, Robert L Z, Zhou, Ru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19924
container_issue 37
container_start_page 19914
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Wang, Changxue
Li, Dongdong
Mao, Xiaoli
Wan, Lei
Cheng, Zhen
Zhu, Jun
Hoye, Robert L Z
Zhou, Ru
description In2S3 has been regarded as a promising nontoxic alternative to CdS as an n-type electron transporting layer (ETL) for environmentally friendly antimony chalcogenide solar cells. However, the high-density of vacancy defects in In2S3 cause severe interfacial charge recombination in optoelectronic devices. To tackle this issue, herein we successfully incorporate a novel structurally two-dimensional wide-bandgap InOCl as an interfacial passivator between the In2S3 buffer layer and Sb2(S,Se)3 absorber through a simple InCl3 post-treatment strategy, which effectively improves the quality of the In2S3/Sb2(S,Se)3 heterointerface. Through careful experimental and computational studies, we believe that the wide bandgap InOCl passivator plays an important role in defect healing of In2S3 at the heterointerface by increasing the vacancy formation energy and thus reducing the density of defect states. Moreover, this interfacial layer contributes to the formation of a more favorable “spike”-like energy band alignment at the ETL/absorber interface and inhibits the transformation of In2S3 into In(OH)3 in moist air. As a result of significantly suppressed detrimental effects from interfacial recombination via positive defect healing, the In2S3/InOCl-based Sb2(S,Se)3 solar cell obtains a remarkable power conversion efficiency of 5.20%. To the best of our knowledge, this is the champion efficiency reported for In2S3-based antimony chalcogenide solar cells.
doi_str_mv 10.1039/d3ta01736b
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2868611498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2868611498</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-1a58f4fc6b1f62e88b3ebfa80f25141d7207e928be4478e807f7398f97e021673</originalsourceid><addsrcrecordid>eNo9TUtLAzEYDKJgqb34CwJeFFybxzb5cpTiY6HQw-q5ZHe_tFtCsm7S-vddUJzLzDDDDCG3nD1xJs2yk9kyrqVqLshMsBUrdGnU5b8GuCaLlI5sAjCmjJmRXIWMo7Ntbz3t0GGb6QGt78OeRkerIGq5rBtxXz_W-CCnbKrH4ym0uY-BpujtSFv0PtHvPh-opSGe0U-mw6KxodvbYVrZrj0dbEr92eY43pArZ33CxR_Pyefry8f6vdhs36r186YYOMhccLsCV7pWNdwpgQCNxMZZYE6seMk7LZhGI6DBstSAwLTT0oAzGpngSss5ufvdHcb4dcKUd8d4GsN0uROgQHFeGpA_dgJccg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2868611498</pqid></control><display><type>article</type><title>Interfacial defect healing of In2S3/Sb2(S,Se)3 heterojunction solar cells with a novel wide-bandgap InOCl passivator</title><source>Royal Society Of Chemistry Journals</source><creator>Wang, Changxue ; Li, Dongdong ; Mao, Xiaoli ; Wan, Lei ; Cheng, Zhen ; Zhu, Jun ; Hoye, Robert L Z ; Zhou, Ru</creator><creatorcontrib>Wang, Changxue ; Li, Dongdong ; Mao, Xiaoli ; Wan, Lei ; Cheng, Zhen ; Zhu, Jun ; Hoye, Robert L Z ; Zhou, Ru</creatorcontrib><description>In2S3 has been regarded as a promising nontoxic alternative to CdS as an n-type electron transporting layer (ETL) for environmentally friendly antimony chalcogenide solar cells. However, the high-density of vacancy defects in In2S3 cause severe interfacial charge recombination in optoelectronic devices. To tackle this issue, herein we successfully incorporate a novel structurally two-dimensional wide-bandgap InOCl as an interfacial passivator between the In2S3 buffer layer and Sb2(S,Se)3 absorber through a simple InCl3 post-treatment strategy, which effectively improves the quality of the In2S3/Sb2(S,Se)3 heterointerface. Through careful experimental and computational studies, we believe that the wide bandgap InOCl passivator plays an important role in defect healing of In2S3 at the heterointerface by increasing the vacancy formation energy and thus reducing the density of defect states. Moreover, this interfacial layer contributes to the formation of a more favorable “spike”-like energy band alignment at the ETL/absorber interface and inhibits the transformation of In2S3 into In(OH)3 in moist air. As a result of significantly suppressed detrimental effects from interfacial recombination via positive defect healing, the In2S3/InOCl-based Sb2(S,Se)3 solar cell obtains a remarkable power conversion efficiency of 5.20%. To the best of our knowledge, this is the champion efficiency reported for In2S3-based antimony chalcogenide solar cells.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta01736b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorbers ; Antimony ; Buffer layers ; Chalcogenides ; Defects ; Density ; Electron transport ; Energy bands ; Energy conversion efficiency ; Energy gap ; Free energy ; Healing ; Heat of formation ; Heterojunctions ; Optoelectronic devices ; Photovoltaic cells ; Recombination ; Solar cells</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-09, Vol.11 (37), p.19914-19924</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Changxue</creatorcontrib><creatorcontrib>Li, Dongdong</creatorcontrib><creatorcontrib>Mao, Xiaoli</creatorcontrib><creatorcontrib>Wan, Lei</creatorcontrib><creatorcontrib>Cheng, Zhen</creatorcontrib><creatorcontrib>Zhu, Jun</creatorcontrib><creatorcontrib>Hoye, Robert L Z</creatorcontrib><creatorcontrib>Zhou, Ru</creatorcontrib><title>Interfacial defect healing of In2S3/Sb2(S,Se)3 heterojunction solar cells with a novel wide-bandgap InOCl passivator</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>In2S3 has been regarded as a promising nontoxic alternative to CdS as an n-type electron transporting layer (ETL) for environmentally friendly antimony chalcogenide solar cells. However, the high-density of vacancy defects in In2S3 cause severe interfacial charge recombination in optoelectronic devices. To tackle this issue, herein we successfully incorporate a novel structurally two-dimensional wide-bandgap InOCl as an interfacial passivator between the In2S3 buffer layer and Sb2(S,Se)3 absorber through a simple InCl3 post-treatment strategy, which effectively improves the quality of the In2S3/Sb2(S,Se)3 heterointerface. Through careful experimental and computational studies, we believe that the wide bandgap InOCl passivator plays an important role in defect healing of In2S3 at the heterointerface by increasing the vacancy formation energy and thus reducing the density of defect states. Moreover, this interfacial layer contributes to the formation of a more favorable “spike”-like energy band alignment at the ETL/absorber interface and inhibits the transformation of In2S3 into In(OH)3 in moist air. As a result of significantly suppressed detrimental effects from interfacial recombination via positive defect healing, the In2S3/InOCl-based Sb2(S,Se)3 solar cell obtains a remarkable power conversion efficiency of 5.20%. To the best of our knowledge, this is the champion efficiency reported for In2S3-based antimony chalcogenide solar cells.</description><subject>Absorbers</subject><subject>Antimony</subject><subject>Buffer layers</subject><subject>Chalcogenides</subject><subject>Defects</subject><subject>Density</subject><subject>Electron transport</subject><subject>Energy bands</subject><subject>Energy conversion efficiency</subject><subject>Energy gap</subject><subject>Free energy</subject><subject>Healing</subject><subject>Heat of formation</subject><subject>Heterojunctions</subject><subject>Optoelectronic devices</subject><subject>Photovoltaic cells</subject><subject>Recombination</subject><subject>Solar cells</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9TUtLAzEYDKJgqb34CwJeFFybxzb5cpTiY6HQw-q5ZHe_tFtCsm7S-vddUJzLzDDDDCG3nD1xJs2yk9kyrqVqLshMsBUrdGnU5b8GuCaLlI5sAjCmjJmRXIWMo7Ntbz3t0GGb6QGt78OeRkerIGq5rBtxXz_W-CCnbKrH4ym0uY-BpujtSFv0PtHvPh-opSGe0U-mw6KxodvbYVrZrj0dbEr92eY43pArZ33CxR_Pyefry8f6vdhs36r186YYOMhccLsCV7pWNdwpgQCNxMZZYE6seMk7LZhGI6DBstSAwLTT0oAzGpngSss5ufvdHcb4dcKUd8d4GsN0uROgQHFeGpA_dgJccg</recordid><startdate>20230926</startdate><enddate>20230926</enddate><creator>Wang, Changxue</creator><creator>Li, Dongdong</creator><creator>Mao, Xiaoli</creator><creator>Wan, Lei</creator><creator>Cheng, Zhen</creator><creator>Zhu, Jun</creator><creator>Hoye, Robert L Z</creator><creator>Zhou, Ru</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20230926</creationdate><title>Interfacial defect healing of In2S3/Sb2(S,Se)3 heterojunction solar cells with a novel wide-bandgap InOCl passivator</title><author>Wang, Changxue ; Li, Dongdong ; Mao, Xiaoli ; Wan, Lei ; Cheng, Zhen ; Zhu, Jun ; Hoye, Robert L Z ; Zhou, Ru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-1a58f4fc6b1f62e88b3ebfa80f25141d7207e928be4478e807f7398f97e021673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorbers</topic><topic>Antimony</topic><topic>Buffer layers</topic><topic>Chalcogenides</topic><topic>Defects</topic><topic>Density</topic><topic>Electron transport</topic><topic>Energy bands</topic><topic>Energy conversion efficiency</topic><topic>Energy gap</topic><topic>Free energy</topic><topic>Healing</topic><topic>Heat of formation</topic><topic>Heterojunctions</topic><topic>Optoelectronic devices</topic><topic>Photovoltaic cells</topic><topic>Recombination</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Changxue</creatorcontrib><creatorcontrib>Li, Dongdong</creatorcontrib><creatorcontrib>Mao, Xiaoli</creatorcontrib><creatorcontrib>Wan, Lei</creatorcontrib><creatorcontrib>Cheng, Zhen</creatorcontrib><creatorcontrib>Zhu, Jun</creatorcontrib><creatorcontrib>Hoye, Robert L Z</creatorcontrib><creatorcontrib>Zhou, Ru</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Changxue</au><au>Li, Dongdong</au><au>Mao, Xiaoli</au><au>Wan, Lei</au><au>Cheng, Zhen</au><au>Zhu, Jun</au><au>Hoye, Robert L Z</au><au>Zhou, Ru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial defect healing of In2S3/Sb2(S,Se)3 heterojunction solar cells with a novel wide-bandgap InOCl passivator</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-09-26</date><risdate>2023</risdate><volume>11</volume><issue>37</issue><spage>19914</spage><epage>19924</epage><pages>19914-19924</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>In2S3 has been regarded as a promising nontoxic alternative to CdS as an n-type electron transporting layer (ETL) for environmentally friendly antimony chalcogenide solar cells. However, the high-density of vacancy defects in In2S3 cause severe interfacial charge recombination in optoelectronic devices. To tackle this issue, herein we successfully incorporate a novel structurally two-dimensional wide-bandgap InOCl as an interfacial passivator between the In2S3 buffer layer and Sb2(S,Se)3 absorber through a simple InCl3 post-treatment strategy, which effectively improves the quality of the In2S3/Sb2(S,Se)3 heterointerface. Through careful experimental and computational studies, we believe that the wide bandgap InOCl passivator plays an important role in defect healing of In2S3 at the heterointerface by increasing the vacancy formation energy and thus reducing the density of defect states. Moreover, this interfacial layer contributes to the formation of a more favorable “spike”-like energy band alignment at the ETL/absorber interface and inhibits the transformation of In2S3 into In(OH)3 in moist air. As a result of significantly suppressed detrimental effects from interfacial recombination via positive defect healing, the In2S3/InOCl-based Sb2(S,Se)3 solar cell obtains a remarkable power conversion efficiency of 5.20%. To the best of our knowledge, this is the champion efficiency reported for In2S3-based antimony chalcogenide solar cells.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta01736b</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-09, Vol.11 (37), p.19914-19924
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2868611498
source Royal Society Of Chemistry Journals
subjects Absorbers
Antimony
Buffer layers
Chalcogenides
Defects
Density
Electron transport
Energy bands
Energy conversion efficiency
Energy gap
Free energy
Healing
Heat of formation
Heterojunctions
Optoelectronic devices
Photovoltaic cells
Recombination
Solar cells
title Interfacial defect healing of In2S3/Sb2(S,Se)3 heterojunction solar cells with a novel wide-bandgap InOCl passivator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20defect%20healing%20of%20In2S3/Sb2(S,Se)3%20heterojunction%20solar%20cells%20with%20a%20novel%20wide-bandgap%20InOCl%20passivator&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Changxue&rft.date=2023-09-26&rft.volume=11&rft.issue=37&rft.spage=19914&rft.epage=19924&rft.pages=19914-19924&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta01736b&rft_dat=%3Cproquest%3E2868611498%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2868611498&rft_id=info:pmid/&rfr_iscdi=true