Interface engineering of CoS/MoS2 heterostructure for the electrocatalytic reduction of N2 to NH3

As an environmentally friendly and sustainable method for ammonia synthesis, nitrogen reduction reaction (NRR) by electrocatalysis possesses several advantages, including viability under mild conditions, abundant reaction raw materials and low energy consumption, and thus it is supposed to be a prom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry frontiers 2023-09, Vol.10 (19), p.5700-5709
Hauptverfasser: Liu, Yixian, Wu, Ruqiang, Liu, Yunliang, Deng, Peiji, Li, Yaxi, Cheng, Yuanyuan, Du, Yongchao, Li, Zenan, Xiong, Yan, Liu, Naiyun, Kang, Zhenhui, Li, Haitao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5709
container_issue 19
container_start_page 5700
container_title Inorganic chemistry frontiers
container_volume 10
creator Liu, Yixian
Wu, Ruqiang
Liu, Yunliang
Deng, Peiji
Li, Yaxi
Cheng, Yuanyuan
Du, Yongchao
Li, Zenan
Xiong, Yan
Liu, Naiyun
Kang, Zhenhui
Li, Haitao
description As an environmentally friendly and sustainable method for ammonia synthesis, nitrogen reduction reaction (NRR) by electrocatalysis possesses several advantages, including viability under mild conditions, abundant reaction raw materials and low energy consumption, and thus it is supposed to be a promising alternative to the traditional Haber–Bosch process. However, the stable N≡N bonds in the nitrogen (N2) and the competing hydrogen evolution reaction (HER) put harsh requirements on catalysts. In this study, the CoS/MoS2 heterojunction catalyst where CoS nanoparticles are anchored on the MoS2 nanosheets is reported as a high-efficiency NRR catalyst. The catalysts have high NH3 yield (23.23 μg h−1 mgcat.−1), reasonable faradaic efficiency (FE, 12.63%) and long-term electrochemical stability under −0.45 V vs. RHE in 0.1 M Na2SO4 solution, whose performance is better than MoS2 and CoS. The TPV results show rapid interfacial electron transfer and good conductivity of the material, and the DFT calculation reveals that the CoS attached to the (100) plane effectively enhances N2 adsorption and catalysis performance.
doi_str_mv 10.1039/d3qi01139a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2868553850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2868553850</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-e66746f87a0e394934d576a6a61e22a44c5c52375f269e3491b721f2120382ca3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWGov_oKA57XJTLK7OUpRW6j1UD2XNDtpV5ZNm80e_PdGLPIOb3h8MwOPsXspHqVAM2_w3Aop0dgrNgGhoZBa4_X_rPQtmw1Duxc5EEaKasLsqk8UvXXEqT-0PVFs-wMPni_Cdv4WtsCPlIkwpDi6NEbiPkSejpnvyKUYnE22-06t45GajLSh_13fAE-Bb5Z4x2687QaaXXzKPl-ePxbLYv3-ulo8rYuTrDEVVJaVKn1dWUFolEHV6Kq0WZIArFJOOw1YaQ-lIVRG7iuQHiQIrMFZnLKHv7unGM4jDWn3FcbY55c7qMs6N1FrgT-EI1WS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2868553850</pqid></control><display><type>article</type><title>Interface engineering of CoS/MoS2 heterostructure for the electrocatalytic reduction of N2 to NH3</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Liu, Yixian ; Wu, Ruqiang ; Liu, Yunliang ; Deng, Peiji ; Li, Yaxi ; Cheng, Yuanyuan ; Du, Yongchao ; Li, Zenan ; Xiong, Yan ; Liu, Naiyun ; Kang, Zhenhui ; Li, Haitao</creator><creatorcontrib>Liu, Yixian ; Wu, Ruqiang ; Liu, Yunliang ; Deng, Peiji ; Li, Yaxi ; Cheng, Yuanyuan ; Du, Yongchao ; Li, Zenan ; Xiong, Yan ; Liu, Naiyun ; Kang, Zhenhui ; Li, Haitao</creatorcontrib><description>As an environmentally friendly and sustainable method for ammonia synthesis, nitrogen reduction reaction (NRR) by electrocatalysis possesses several advantages, including viability under mild conditions, abundant reaction raw materials and low energy consumption, and thus it is supposed to be a promising alternative to the traditional Haber–Bosch process. However, the stable N≡N bonds in the nitrogen (N2) and the competing hydrogen evolution reaction (HER) put harsh requirements on catalysts. In this study, the CoS/MoS2 heterojunction catalyst where CoS nanoparticles are anchored on the MoS2 nanosheets is reported as a high-efficiency NRR catalyst. The catalysts have high NH3 yield (23.23 μg h−1 mgcat.−1), reasonable faradaic efficiency (FE, 12.63%) and long-term electrochemical stability under −0.45 V vs. RHE in 0.1 M Na2SO4 solution, whose performance is better than MoS2 and CoS. The TPV results show rapid interfacial electron transfer and good conductivity of the material, and the DFT calculation reveals that the CoS attached to the (100) plane effectively enhances N2 adsorption and catalysis performance.</description><identifier>ISSN: 2052-1545</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/d3qi01139a</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Ammonia ; Catalysis ; Catalysts ; Chemical reduction ; Chemical synthesis ; Electron transfer ; Energy consumption ; Haber Bosch process ; Heterojunctions ; Heterostructures ; Hydrogen evolution reactions ; Inorganic chemistry ; Molybdenum disulfide ; Nanoparticles ; Nitrogen ; Raw materials</subject><ispartof>Inorganic chemistry frontiers, 2023-09, Vol.10 (19), p.5700-5709</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Yixian</creatorcontrib><creatorcontrib>Wu, Ruqiang</creatorcontrib><creatorcontrib>Liu, Yunliang</creatorcontrib><creatorcontrib>Deng, Peiji</creatorcontrib><creatorcontrib>Li, Yaxi</creatorcontrib><creatorcontrib>Cheng, Yuanyuan</creatorcontrib><creatorcontrib>Du, Yongchao</creatorcontrib><creatorcontrib>Li, Zenan</creatorcontrib><creatorcontrib>Xiong, Yan</creatorcontrib><creatorcontrib>Liu, Naiyun</creatorcontrib><creatorcontrib>Kang, Zhenhui</creatorcontrib><creatorcontrib>Li, Haitao</creatorcontrib><title>Interface engineering of CoS/MoS2 heterostructure for the electrocatalytic reduction of N2 to NH3</title><title>Inorganic chemistry frontiers</title><description>As an environmentally friendly and sustainable method for ammonia synthesis, nitrogen reduction reaction (NRR) by electrocatalysis possesses several advantages, including viability under mild conditions, abundant reaction raw materials and low energy consumption, and thus it is supposed to be a promising alternative to the traditional Haber–Bosch process. However, the stable N≡N bonds in the nitrogen (N2) and the competing hydrogen evolution reaction (HER) put harsh requirements on catalysts. In this study, the CoS/MoS2 heterojunction catalyst where CoS nanoparticles are anchored on the MoS2 nanosheets is reported as a high-efficiency NRR catalyst. The catalysts have high NH3 yield (23.23 μg h−1 mgcat.−1), reasonable faradaic efficiency (FE, 12.63%) and long-term electrochemical stability under −0.45 V vs. RHE in 0.1 M Na2SO4 solution, whose performance is better than MoS2 and CoS. The TPV results show rapid interfacial electron transfer and good conductivity of the material, and the DFT calculation reveals that the CoS attached to the (100) plane effectively enhances N2 adsorption and catalysis performance.</description><subject>Ammonia</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>Electron transfer</subject><subject>Energy consumption</subject><subject>Haber Bosch process</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Hydrogen evolution reactions</subject><subject>Inorganic chemistry</subject><subject>Molybdenum disulfide</subject><subject>Nanoparticles</subject><subject>Nitrogen</subject><subject>Raw materials</subject><issn>2052-1545</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQhYMoWGov_oKA57XJTLK7OUpRW6j1UD2XNDtpV5ZNm80e_PdGLPIOb3h8MwOPsXspHqVAM2_w3Aop0dgrNgGhoZBa4_X_rPQtmw1Duxc5EEaKasLsqk8UvXXEqT-0PVFs-wMPni_Cdv4WtsCPlIkwpDi6NEbiPkSejpnvyKUYnE22-06t45GajLSh_13fAE-Bb5Z4x2687QaaXXzKPl-ePxbLYv3-ulo8rYuTrDEVVJaVKn1dWUFolEHV6Kq0WZIArFJOOw1YaQ-lIVRG7iuQHiQIrMFZnLKHv7unGM4jDWn3FcbY55c7qMs6N1FrgT-EI1WS</recordid><startdate>20230926</startdate><enddate>20230926</enddate><creator>Liu, Yixian</creator><creator>Wu, Ruqiang</creator><creator>Liu, Yunliang</creator><creator>Deng, Peiji</creator><creator>Li, Yaxi</creator><creator>Cheng, Yuanyuan</creator><creator>Du, Yongchao</creator><creator>Li, Zenan</creator><creator>Xiong, Yan</creator><creator>Liu, Naiyun</creator><creator>Kang, Zhenhui</creator><creator>Li, Haitao</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20230926</creationdate><title>Interface engineering of CoS/MoS2 heterostructure for the electrocatalytic reduction of N2 to NH3</title><author>Liu, Yixian ; Wu, Ruqiang ; Liu, Yunliang ; Deng, Peiji ; Li, Yaxi ; Cheng, Yuanyuan ; Du, Yongchao ; Li, Zenan ; Xiong, Yan ; Liu, Naiyun ; Kang, Zhenhui ; Li, Haitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-e66746f87a0e394934d576a6a61e22a44c5c52375f269e3491b721f2120382ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ammonia</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>Electron transfer</topic><topic>Energy consumption</topic><topic>Haber Bosch process</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Hydrogen evolution reactions</topic><topic>Inorganic chemistry</topic><topic>Molybdenum disulfide</topic><topic>Nanoparticles</topic><topic>Nitrogen</topic><topic>Raw materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yixian</creatorcontrib><creatorcontrib>Wu, Ruqiang</creatorcontrib><creatorcontrib>Liu, Yunliang</creatorcontrib><creatorcontrib>Deng, Peiji</creatorcontrib><creatorcontrib>Li, Yaxi</creatorcontrib><creatorcontrib>Cheng, Yuanyuan</creatorcontrib><creatorcontrib>Du, Yongchao</creatorcontrib><creatorcontrib>Li, Zenan</creatorcontrib><creatorcontrib>Xiong, Yan</creatorcontrib><creatorcontrib>Liu, Naiyun</creatorcontrib><creatorcontrib>Kang, Zhenhui</creatorcontrib><creatorcontrib>Li, Haitao</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yixian</au><au>Wu, Ruqiang</au><au>Liu, Yunliang</au><au>Deng, Peiji</au><au>Li, Yaxi</au><au>Cheng, Yuanyuan</au><au>Du, Yongchao</au><au>Li, Zenan</au><au>Xiong, Yan</au><au>Liu, Naiyun</au><au>Kang, Zhenhui</au><au>Li, Haitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface engineering of CoS/MoS2 heterostructure for the electrocatalytic reduction of N2 to NH3</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2023-09-26</date><risdate>2023</risdate><volume>10</volume><issue>19</issue><spage>5700</spage><epage>5709</epage><pages>5700-5709</pages><issn>2052-1545</issn><eissn>2052-1553</eissn><abstract>As an environmentally friendly and sustainable method for ammonia synthesis, nitrogen reduction reaction (NRR) by electrocatalysis possesses several advantages, including viability under mild conditions, abundant reaction raw materials and low energy consumption, and thus it is supposed to be a promising alternative to the traditional Haber–Bosch process. However, the stable N≡N bonds in the nitrogen (N2) and the competing hydrogen evolution reaction (HER) put harsh requirements on catalysts. In this study, the CoS/MoS2 heterojunction catalyst where CoS nanoparticles are anchored on the MoS2 nanosheets is reported as a high-efficiency NRR catalyst. The catalysts have high NH3 yield (23.23 μg h−1 mgcat.−1), reasonable faradaic efficiency (FE, 12.63%) and long-term electrochemical stability under −0.45 V vs. RHE in 0.1 M Na2SO4 solution, whose performance is better than MoS2 and CoS. The TPV results show rapid interfacial electron transfer and good conductivity of the material, and the DFT calculation reveals that the CoS attached to the (100) plane effectively enhances N2 adsorption and catalysis performance.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3qi01139a</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2052-1545
ispartof Inorganic chemistry frontiers, 2023-09, Vol.10 (19), p.5700-5709
issn 2052-1545
2052-1553
language eng
recordid cdi_proquest_journals_2868553850
source Royal Society Of Chemistry Journals 2008-
subjects Ammonia
Catalysis
Catalysts
Chemical reduction
Chemical synthesis
Electron transfer
Energy consumption
Haber Bosch process
Heterojunctions
Heterostructures
Hydrogen evolution reactions
Inorganic chemistry
Molybdenum disulfide
Nanoparticles
Nitrogen
Raw materials
title Interface engineering of CoS/MoS2 heterostructure for the electrocatalytic reduction of N2 to NH3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20engineering%20of%20CoS/MoS2%20heterostructure%20for%20the%20electrocatalytic%20reduction%20of%20N2%20to%20NH3&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Liu,%20Yixian&rft.date=2023-09-26&rft.volume=10&rft.issue=19&rft.spage=5700&rft.epage=5709&rft.pages=5700-5709&rft.issn=2052-1545&rft.eissn=2052-1553&rft_id=info:doi/10.1039/d3qi01139a&rft_dat=%3Cproquest%3E2868553850%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2868553850&rft_id=info:pmid/&rfr_iscdi=true