Influence of the deposition pattern on the interlayer fracture toughness of FDM components

The present work is aimed at studying the influence of the deposition strategy on the fracture toughness behavior of the inter-layer zone of fused deposition modeling (FDM) 3D-printed parts. Double cantilever beam (DCB) specimens were produced and tested following recognized testing protocols to cap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2023-10, Vol.128 (9-10), p.4269-4281
Hauptverfasser: Lambiase, Francesco, Stamopoulos, Antonios G., Pace, Francesco, Paoletti, Alfonso
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4281
container_issue 9-10
container_start_page 4269
container_title International journal of advanced manufacturing technology
container_volume 128
creator Lambiase, Francesco
Stamopoulos, Antonios G.
Pace, Francesco
Paoletti, Alfonso
description The present work is aimed at studying the influence of the deposition strategy on the fracture toughness behavior of the inter-layer zone of fused deposition modeling (FDM) 3D-printed parts. Double cantilever beam (DCB) specimens were produced and tested following recognized testing protocols to capture the fracture toughness behavior. The tested conditions involved linear patterns with monodirectional and alternate infill strategies. The difference in the mechanical behavior of the samples was crossed with optical microscopy observations that also enabled the precise quantification of the effective bonding area between consecutive layers. The results indicated that the deposition pattern dramatically influenced the fracture toughness behavior of these components. Monodirectional deposition strategies involved a fracture toughness within 0.75 and 2.4 kJ/m 2 for 0° and 90° raster angles, respectively. On the other hand, the fracture toughness of samples manufactured with alternate deposition strategies more than doubled the values mentioned above, being 2 kJ/m 2 and 3.9 kJ/m 2 for 0/90° and ±45° deposition strategies, respectively, significantly affecting the failure mode as well. These differences become even more evident if the effective bonding area between consecutive layers is considered.
doi_str_mv 10.1007/s00170-023-12223-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2868475733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2868475733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-3758ce078eeee606659a1369717cf8dcb93854e0e734bd83fdd87bd2edc9395a3</originalsourceid><addsrcrecordid>eNp9UD1PwzAQtRBIlI8_wGSJOWDnEtsZUaFQqYgFFhYrdS5tqtYOtjP03-MQJDZuuA_de-9Oj5Abzu44Y_I-MMYly1gOGc_zMZ-QGS8AMmC8PCUzlguVgRTqnFyEsEtwwYWakc-lbfcDWoPUtTRukTbYu9DFzlna1zGitzS146azadrXR_S09bWJg0ca3bDZWgxhpC8eX6lxh95ZtDFckbO23ge8_q2X5GPx9D5_yVZvz8v5wyozICCmp0plkEmFKQQToqxqDqKSXJpWNWZdgSoLZCihWDcK2qZRct3k2JgKqrKGS3I76fbefQ0Yot65wdt0UudKqEKWEiCh8gllvAvBY6t73x1qf9Sc6dFDPXmok4f6x0PNEwkmUkhgu0H_J_0P6xvNdHUW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2868475733</pqid></control><display><type>article</type><title>Influence of the deposition pattern on the interlayer fracture toughness of FDM components</title><source>SpringerNature Journals</source><creator>Lambiase, Francesco ; Stamopoulos, Antonios G. ; Pace, Francesco ; Paoletti, Alfonso</creator><creatorcontrib>Lambiase, Francesco ; Stamopoulos, Antonios G. ; Pace, Francesco ; Paoletti, Alfonso</creatorcontrib><description>The present work is aimed at studying the influence of the deposition strategy on the fracture toughness behavior of the inter-layer zone of fused deposition modeling (FDM) 3D-printed parts. Double cantilever beam (DCB) specimens were produced and tested following recognized testing protocols to capture the fracture toughness behavior. The tested conditions involved linear patterns with monodirectional and alternate infill strategies. The difference in the mechanical behavior of the samples was crossed with optical microscopy observations that also enabled the precise quantification of the effective bonding area between consecutive layers. The results indicated that the deposition pattern dramatically influenced the fracture toughness behavior of these components. Monodirectional deposition strategies involved a fracture toughness within 0.75 and 2.4 kJ/m 2 for 0° and 90° raster angles, respectively. On the other hand, the fracture toughness of samples manufactured with alternate deposition strategies more than doubled the values mentioned above, being 2 kJ/m 2 and 3.9 kJ/m 2 for 0/90° and ±45° deposition strategies, respectively, significantly affecting the failure mode as well. These differences become even more evident if the effective bonding area between consecutive layers is considered.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-023-12223-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Additive manufacturing ; Advanced manufacturing technologies ; Bonding ; CAE) and Design ; Cantilever beams ; Composite materials ; Computer-Aided Engineering (CAD ; Crack propagation ; Deposition ; Engineering ; Failure modes ; Fracture toughness ; Fused deposition modeling ; Industrial and Production Engineering ; Interlayers ; Load ; Mechanical Engineering ; Mechanical properties ; Media Management ; Optical microscopy ; Original Article ; Polymers ; Three dimensional models ; Three dimensional printing</subject><ispartof>International journal of advanced manufacturing technology, 2023-10, Vol.128 (9-10), p.4269-4281</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-3758ce078eeee606659a1369717cf8dcb93854e0e734bd83fdd87bd2edc9395a3</citedby><cites>FETCH-LOGICAL-c363t-3758ce078eeee606659a1369717cf8dcb93854e0e734bd83fdd87bd2edc9395a3</cites><orcidid>0000-0001-8220-4901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-023-12223-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-023-12223-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lambiase, Francesco</creatorcontrib><creatorcontrib>Stamopoulos, Antonios G.</creatorcontrib><creatorcontrib>Pace, Francesco</creatorcontrib><creatorcontrib>Paoletti, Alfonso</creatorcontrib><title>Influence of the deposition pattern on the interlayer fracture toughness of FDM components</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The present work is aimed at studying the influence of the deposition strategy on the fracture toughness behavior of the inter-layer zone of fused deposition modeling (FDM) 3D-printed parts. Double cantilever beam (DCB) specimens were produced and tested following recognized testing protocols to capture the fracture toughness behavior. The tested conditions involved linear patterns with monodirectional and alternate infill strategies. The difference in the mechanical behavior of the samples was crossed with optical microscopy observations that also enabled the precise quantification of the effective bonding area between consecutive layers. The results indicated that the deposition pattern dramatically influenced the fracture toughness behavior of these components. Monodirectional deposition strategies involved a fracture toughness within 0.75 and 2.4 kJ/m 2 for 0° and 90° raster angles, respectively. On the other hand, the fracture toughness of samples manufactured with alternate deposition strategies more than doubled the values mentioned above, being 2 kJ/m 2 and 3.9 kJ/m 2 for 0/90° and ±45° deposition strategies, respectively, significantly affecting the failure mode as well. These differences become even more evident if the effective bonding area between consecutive layers is considered.</description><subject>Additive manufacturing</subject><subject>Advanced manufacturing technologies</subject><subject>Bonding</subject><subject>CAE) and Design</subject><subject>Cantilever beams</subject><subject>Composite materials</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Crack propagation</subject><subject>Deposition</subject><subject>Engineering</subject><subject>Failure modes</subject><subject>Fracture toughness</subject><subject>Fused deposition modeling</subject><subject>Industrial and Production Engineering</subject><subject>Interlayers</subject><subject>Load</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Media Management</subject><subject>Optical microscopy</subject><subject>Original Article</subject><subject>Polymers</subject><subject>Three dimensional models</subject><subject>Three dimensional printing</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UD1PwzAQtRBIlI8_wGSJOWDnEtsZUaFQqYgFFhYrdS5tqtYOtjP03-MQJDZuuA_de-9Oj5Abzu44Y_I-MMYly1gOGc_zMZ-QGS8AMmC8PCUzlguVgRTqnFyEsEtwwYWakc-lbfcDWoPUtTRukTbYu9DFzlna1zGitzS146azadrXR_S09bWJg0ca3bDZWgxhpC8eX6lxh95ZtDFckbO23ge8_q2X5GPx9D5_yVZvz8v5wyozICCmp0plkEmFKQQToqxqDqKSXJpWNWZdgSoLZCihWDcK2qZRct3k2JgKqrKGS3I76fbefQ0Yot65wdt0UudKqEKWEiCh8gllvAvBY6t73x1qf9Sc6dFDPXmok4f6x0PNEwkmUkhgu0H_J_0P6xvNdHUW</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Lambiase, Francesco</creator><creator>Stamopoulos, Antonios G.</creator><creator>Pace, Francesco</creator><creator>Paoletti, Alfonso</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8220-4901</orcidid></search><sort><creationdate>20231001</creationdate><title>Influence of the deposition pattern on the interlayer fracture toughness of FDM components</title><author>Lambiase, Francesco ; Stamopoulos, Antonios G. ; Pace, Francesco ; Paoletti, Alfonso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-3758ce078eeee606659a1369717cf8dcb93854e0e734bd83fdd87bd2edc9395a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Additive manufacturing</topic><topic>Advanced manufacturing technologies</topic><topic>Bonding</topic><topic>CAE) and Design</topic><topic>Cantilever beams</topic><topic>Composite materials</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Crack propagation</topic><topic>Deposition</topic><topic>Engineering</topic><topic>Failure modes</topic><topic>Fracture toughness</topic><topic>Fused deposition modeling</topic><topic>Industrial and Production Engineering</topic><topic>Interlayers</topic><topic>Load</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Media Management</topic><topic>Optical microscopy</topic><topic>Original Article</topic><topic>Polymers</topic><topic>Three dimensional models</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lambiase, Francesco</creatorcontrib><creatorcontrib>Stamopoulos, Antonios G.</creatorcontrib><creatorcontrib>Pace, Francesco</creatorcontrib><creatorcontrib>Paoletti, Alfonso</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lambiase, Francesco</au><au>Stamopoulos, Antonios G.</au><au>Pace, Francesco</au><au>Paoletti, Alfonso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of the deposition pattern on the interlayer fracture toughness of FDM components</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>128</volume><issue>9-10</issue><spage>4269</spage><epage>4281</epage><pages>4269-4281</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The present work is aimed at studying the influence of the deposition strategy on the fracture toughness behavior of the inter-layer zone of fused deposition modeling (FDM) 3D-printed parts. Double cantilever beam (DCB) specimens were produced and tested following recognized testing protocols to capture the fracture toughness behavior. The tested conditions involved linear patterns with monodirectional and alternate infill strategies. The difference in the mechanical behavior of the samples was crossed with optical microscopy observations that also enabled the precise quantification of the effective bonding area between consecutive layers. The results indicated that the deposition pattern dramatically influenced the fracture toughness behavior of these components. Monodirectional deposition strategies involved a fracture toughness within 0.75 and 2.4 kJ/m 2 for 0° and 90° raster angles, respectively. On the other hand, the fracture toughness of samples manufactured with alternate deposition strategies more than doubled the values mentioned above, being 2 kJ/m 2 and 3.9 kJ/m 2 for 0/90° and ±45° deposition strategies, respectively, significantly affecting the failure mode as well. These differences become even more evident if the effective bonding area between consecutive layers is considered.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-023-12223-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8220-4901</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2023-10, Vol.128 (9-10), p.4269-4281
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2868475733
source SpringerNature Journals
subjects Additive manufacturing
Advanced manufacturing technologies
Bonding
CAE) and Design
Cantilever beams
Composite materials
Computer-Aided Engineering (CAD
Crack propagation
Deposition
Engineering
Failure modes
Fracture toughness
Fused deposition modeling
Industrial and Production Engineering
Interlayers
Load
Mechanical Engineering
Mechanical properties
Media Management
Optical microscopy
Original Article
Polymers
Three dimensional models
Three dimensional printing
title Influence of the deposition pattern on the interlayer fracture toughness of FDM components
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20the%20deposition%20pattern%20on%20the%20interlayer%20fracture%20toughness%20of%20FDM%20components&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Lambiase,%20Francesco&rft.date=2023-10-01&rft.volume=128&rft.issue=9-10&rft.spage=4269&rft.epage=4281&rft.pages=4269-4281&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-023-12223-1&rft_dat=%3Cproquest_cross%3E2868475733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2868475733&rft_id=info:pmid/&rfr_iscdi=true