Influence of the deposition pattern on the interlayer fracture toughness of FDM components
The present work is aimed at studying the influence of the deposition strategy on the fracture toughness behavior of the inter-layer zone of fused deposition modeling (FDM) 3D-printed parts. Double cantilever beam (DCB) specimens were produced and tested following recognized testing protocols to cap...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2023-10, Vol.128 (9-10), p.4269-4281 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4281 |
---|---|
container_issue | 9-10 |
container_start_page | 4269 |
container_title | International journal of advanced manufacturing technology |
container_volume | 128 |
creator | Lambiase, Francesco Stamopoulos, Antonios G. Pace, Francesco Paoletti, Alfonso |
description | The present work is aimed at studying the influence of the deposition strategy on the fracture toughness behavior of the inter-layer zone of fused deposition modeling (FDM) 3D-printed parts. Double cantilever beam (DCB) specimens were produced and tested following recognized testing protocols to capture the fracture toughness behavior. The tested conditions involved linear patterns with monodirectional and alternate infill strategies. The difference in the mechanical behavior of the samples was crossed with optical microscopy observations that also enabled the precise quantification of the effective bonding area between consecutive layers. The results indicated that the deposition pattern dramatically influenced the fracture toughness behavior of these components. Monodirectional deposition strategies involved a fracture toughness within 0.75 and 2.4 kJ/m
2
for 0° and 90° raster angles, respectively. On the other hand, the fracture toughness of samples manufactured with alternate deposition strategies more than doubled the values mentioned above, being 2 kJ/m
2
and 3.9 kJ/m
2
for 0/90° and ±45° deposition strategies, respectively, significantly affecting the failure mode as well. These differences become even more evident if the effective bonding area between consecutive layers is considered. |
doi_str_mv | 10.1007/s00170-023-12223-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2868475733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2868475733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-3758ce078eeee606659a1369717cf8dcb93854e0e734bd83fdd87bd2edc9395a3</originalsourceid><addsrcrecordid>eNp9UD1PwzAQtRBIlI8_wGSJOWDnEtsZUaFQqYgFFhYrdS5tqtYOtjP03-MQJDZuuA_de-9Oj5Abzu44Y_I-MMYly1gOGc_zMZ-QGS8AMmC8PCUzlguVgRTqnFyEsEtwwYWakc-lbfcDWoPUtTRukTbYu9DFzlna1zGitzS146azadrXR_S09bWJg0ca3bDZWgxhpC8eX6lxh95ZtDFckbO23ge8_q2X5GPx9D5_yVZvz8v5wyozICCmp0plkEmFKQQToqxqDqKSXJpWNWZdgSoLZCihWDcK2qZRct3k2JgKqrKGS3I76fbefQ0Yot65wdt0UudKqEKWEiCh8gllvAvBY6t73x1qf9Sc6dFDPXmok4f6x0PNEwkmUkhgu0H_J_0P6xvNdHUW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2868475733</pqid></control><display><type>article</type><title>Influence of the deposition pattern on the interlayer fracture toughness of FDM components</title><source>SpringerNature Journals</source><creator>Lambiase, Francesco ; Stamopoulos, Antonios G. ; Pace, Francesco ; Paoletti, Alfonso</creator><creatorcontrib>Lambiase, Francesco ; Stamopoulos, Antonios G. ; Pace, Francesco ; Paoletti, Alfonso</creatorcontrib><description>The present work is aimed at studying the influence of the deposition strategy on the fracture toughness behavior of the inter-layer zone of fused deposition modeling (FDM) 3D-printed parts. Double cantilever beam (DCB) specimens were produced and tested following recognized testing protocols to capture the fracture toughness behavior. The tested conditions involved linear patterns with monodirectional and alternate infill strategies. The difference in the mechanical behavior of the samples was crossed with optical microscopy observations that also enabled the precise quantification of the effective bonding area between consecutive layers. The results indicated that the deposition pattern dramatically influenced the fracture toughness behavior of these components. Monodirectional deposition strategies involved a fracture toughness within 0.75 and 2.4 kJ/m
2
for 0° and 90° raster angles, respectively. On the other hand, the fracture toughness of samples manufactured with alternate deposition strategies more than doubled the values mentioned above, being 2 kJ/m
2
and 3.9 kJ/m
2
for 0/90° and ±45° deposition strategies, respectively, significantly affecting the failure mode as well. These differences become even more evident if the effective bonding area between consecutive layers is considered.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-023-12223-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Additive manufacturing ; Advanced manufacturing technologies ; Bonding ; CAE) and Design ; Cantilever beams ; Composite materials ; Computer-Aided Engineering (CAD ; Crack propagation ; Deposition ; Engineering ; Failure modes ; Fracture toughness ; Fused deposition modeling ; Industrial and Production Engineering ; Interlayers ; Load ; Mechanical Engineering ; Mechanical properties ; Media Management ; Optical microscopy ; Original Article ; Polymers ; Three dimensional models ; Three dimensional printing</subject><ispartof>International journal of advanced manufacturing technology, 2023-10, Vol.128 (9-10), p.4269-4281</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-3758ce078eeee606659a1369717cf8dcb93854e0e734bd83fdd87bd2edc9395a3</citedby><cites>FETCH-LOGICAL-c363t-3758ce078eeee606659a1369717cf8dcb93854e0e734bd83fdd87bd2edc9395a3</cites><orcidid>0000-0001-8220-4901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-023-12223-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-023-12223-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lambiase, Francesco</creatorcontrib><creatorcontrib>Stamopoulos, Antonios G.</creatorcontrib><creatorcontrib>Pace, Francesco</creatorcontrib><creatorcontrib>Paoletti, Alfonso</creatorcontrib><title>Influence of the deposition pattern on the interlayer fracture toughness of FDM components</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The present work is aimed at studying the influence of the deposition strategy on the fracture toughness behavior of the inter-layer zone of fused deposition modeling (FDM) 3D-printed parts. Double cantilever beam (DCB) specimens were produced and tested following recognized testing protocols to capture the fracture toughness behavior. The tested conditions involved linear patterns with monodirectional and alternate infill strategies. The difference in the mechanical behavior of the samples was crossed with optical microscopy observations that also enabled the precise quantification of the effective bonding area between consecutive layers. The results indicated that the deposition pattern dramatically influenced the fracture toughness behavior of these components. Monodirectional deposition strategies involved a fracture toughness within 0.75 and 2.4 kJ/m
2
for 0° and 90° raster angles, respectively. On the other hand, the fracture toughness of samples manufactured with alternate deposition strategies more than doubled the values mentioned above, being 2 kJ/m
2
and 3.9 kJ/m
2
for 0/90° and ±45° deposition strategies, respectively, significantly affecting the failure mode as well. These differences become even more evident if the effective bonding area between consecutive layers is considered.</description><subject>Additive manufacturing</subject><subject>Advanced manufacturing technologies</subject><subject>Bonding</subject><subject>CAE) and Design</subject><subject>Cantilever beams</subject><subject>Composite materials</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Crack propagation</subject><subject>Deposition</subject><subject>Engineering</subject><subject>Failure modes</subject><subject>Fracture toughness</subject><subject>Fused deposition modeling</subject><subject>Industrial and Production Engineering</subject><subject>Interlayers</subject><subject>Load</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Media Management</subject><subject>Optical microscopy</subject><subject>Original Article</subject><subject>Polymers</subject><subject>Three dimensional models</subject><subject>Three dimensional printing</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UD1PwzAQtRBIlI8_wGSJOWDnEtsZUaFQqYgFFhYrdS5tqtYOtjP03-MQJDZuuA_de-9Oj5Abzu44Y_I-MMYly1gOGc_zMZ-QGS8AMmC8PCUzlguVgRTqnFyEsEtwwYWakc-lbfcDWoPUtTRukTbYu9DFzlna1zGitzS146azadrXR_S09bWJg0ca3bDZWgxhpC8eX6lxh95ZtDFckbO23ge8_q2X5GPx9D5_yVZvz8v5wyozICCmp0plkEmFKQQToqxqDqKSXJpWNWZdgSoLZCihWDcK2qZRct3k2JgKqrKGS3I76fbefQ0Yot65wdt0UudKqEKWEiCh8gllvAvBY6t73x1qf9Sc6dFDPXmok4f6x0PNEwkmUkhgu0H_J_0P6xvNdHUW</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Lambiase, Francesco</creator><creator>Stamopoulos, Antonios G.</creator><creator>Pace, Francesco</creator><creator>Paoletti, Alfonso</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8220-4901</orcidid></search><sort><creationdate>20231001</creationdate><title>Influence of the deposition pattern on the interlayer fracture toughness of FDM components</title><author>Lambiase, Francesco ; Stamopoulos, Antonios G. ; Pace, Francesco ; Paoletti, Alfonso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-3758ce078eeee606659a1369717cf8dcb93854e0e734bd83fdd87bd2edc9395a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Additive manufacturing</topic><topic>Advanced manufacturing technologies</topic><topic>Bonding</topic><topic>CAE) and Design</topic><topic>Cantilever beams</topic><topic>Composite materials</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Crack propagation</topic><topic>Deposition</topic><topic>Engineering</topic><topic>Failure modes</topic><topic>Fracture toughness</topic><topic>Fused deposition modeling</topic><topic>Industrial and Production Engineering</topic><topic>Interlayers</topic><topic>Load</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Media Management</topic><topic>Optical microscopy</topic><topic>Original Article</topic><topic>Polymers</topic><topic>Three dimensional models</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lambiase, Francesco</creatorcontrib><creatorcontrib>Stamopoulos, Antonios G.</creatorcontrib><creatorcontrib>Pace, Francesco</creatorcontrib><creatorcontrib>Paoletti, Alfonso</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lambiase, Francesco</au><au>Stamopoulos, Antonios G.</au><au>Pace, Francesco</au><au>Paoletti, Alfonso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of the deposition pattern on the interlayer fracture toughness of FDM components</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>128</volume><issue>9-10</issue><spage>4269</spage><epage>4281</epage><pages>4269-4281</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The present work is aimed at studying the influence of the deposition strategy on the fracture toughness behavior of the inter-layer zone of fused deposition modeling (FDM) 3D-printed parts. Double cantilever beam (DCB) specimens were produced and tested following recognized testing protocols to capture the fracture toughness behavior. The tested conditions involved linear patterns with monodirectional and alternate infill strategies. The difference in the mechanical behavior of the samples was crossed with optical microscopy observations that also enabled the precise quantification of the effective bonding area between consecutive layers. The results indicated that the deposition pattern dramatically influenced the fracture toughness behavior of these components. Monodirectional deposition strategies involved a fracture toughness within 0.75 and 2.4 kJ/m
2
for 0° and 90° raster angles, respectively. On the other hand, the fracture toughness of samples manufactured with alternate deposition strategies more than doubled the values mentioned above, being 2 kJ/m
2
and 3.9 kJ/m
2
for 0/90° and ±45° deposition strategies, respectively, significantly affecting the failure mode as well. These differences become even more evident if the effective bonding area between consecutive layers is considered.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-023-12223-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8220-4901</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2023-10, Vol.128 (9-10), p.4269-4281 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2868475733 |
source | SpringerNature Journals |
subjects | Additive manufacturing Advanced manufacturing technologies Bonding CAE) and Design Cantilever beams Composite materials Computer-Aided Engineering (CAD Crack propagation Deposition Engineering Failure modes Fracture toughness Fused deposition modeling Industrial and Production Engineering Interlayers Load Mechanical Engineering Mechanical properties Media Management Optical microscopy Original Article Polymers Three dimensional models Three dimensional printing |
title | Influence of the deposition pattern on the interlayer fracture toughness of FDM components |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20the%20deposition%20pattern%20on%20the%20interlayer%20fracture%20toughness%20of%20FDM%20components&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Lambiase,%20Francesco&rft.date=2023-10-01&rft.volume=128&rft.issue=9-10&rft.spage=4269&rft.epage=4281&rft.pages=4269-4281&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-023-12223-1&rft_dat=%3Cproquest_cross%3E2868475733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2868475733&rft_id=info:pmid/&rfr_iscdi=true |