Conditioning Boltzmann generators for rare event sampling

Understanding the dynamics of complex molecular processes is often linked to the study of infrequent transitions between long-lived stable states. The standard approach to the sampling of such rare events is to generate an ensemble of transition paths using a random walk in trajectory space. This, h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning: science and technology 2023-09, Vol.4 (3), p.35050
Hauptverfasser: Falkner, Sebastian, Coretti, Alessandro, Romano, Salvatore, Geissler, Phillip L, Dellago, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35050
container_title Machine learning: science and technology
container_volume 4
creator Falkner, Sebastian
Coretti, Alessandro
Romano, Salvatore
Geissler, Phillip L
Dellago, Christoph
description Understanding the dynamics of complex molecular processes is often linked to the study of infrequent transitions between long-lived stable states. The standard approach to the sampling of such rare events is to generate an ensemble of transition paths using a random walk in trajectory space. This, however, comes with the drawback of strong correlations between subsequently sampled paths and with an intrinsic difficulty in parallelizing the sampling process. We propose a transition path sampling scheme based on neural-network generated configurations. These are obtained employing normalizing flows, a neural network class able to generate statistically independent samples from a given distribution. With this approach, not only are correlations between visited paths removed, but the sampling process becomes easily parallelizable. Moreover, by conditioning the normalizing flow, the sampling of configurations can be steered towards regions of interest. We show that this approach enables the resolution of both the thermodynamics and kinetics of the transition region for systems that can be sampled using exact-likelihood generative models.
doi_str_mv 10.1088/2632-2153/acf55c
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2867589416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_272ce046e95a4cf6971fe44bb59fd144</doaj_id><sourcerecordid>2867589416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-b8471e0b07dc388b669a44fb973b90195c27919345ed6cd1765e37563270a8f23</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGr3LgfcOjbvx1IHH4WCG12HTCYpU6bJmEwF_fVOHaluXN3L5ZxzDx8AlwjeICjlEnOCS4wYWRrrGbMnYHY8nf7Zz8Ei5y2EEDNEGIYzoKoYmnZoY2jDpriL3fC5MyEUGxdcMkNMufAxFckkV7h3F4Yim13fjeILcOZNl93iZ87B68P9S_VUrp8fV9XturQU8aGsJRXIwRqKxhIpa86VodTXSpBaQaSYxUIhRShzDbcNEpw5ItjYWEAjPSZzsJpym2i2uk_tzqQPHU2rvw8xbbRJQ2s7p7HA1kHKnWKGWs-VQN5RWtdM-QZROmZdTVl9im97lwe9jfsUxvoaSy6YVGPnUQUnlU0x5-T88SuC-sBbH4DqA1A98R4t15Oljf1v5r_yL8yTfx4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2867589416</pqid></control><display><type>article</type><title>Conditioning Boltzmann generators for rare event sampling</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Falkner, Sebastian ; Coretti, Alessandro ; Romano, Salvatore ; Geissler, Phillip L ; Dellago, Christoph</creator><creatorcontrib>Falkner, Sebastian ; Coretti, Alessandro ; Romano, Salvatore ; Geissler, Phillip L ; Dellago, Christoph</creatorcontrib><description>Understanding the dynamics of complex molecular processes is often linked to the study of infrequent transitions between long-lived stable states. The standard approach to the sampling of such rare events is to generate an ensemble of transition paths using a random walk in trajectory space. This, however, comes with the drawback of strong correlations between subsequently sampled paths and with an intrinsic difficulty in parallelizing the sampling process. We propose a transition path sampling scheme based on neural-network generated configurations. These are obtained employing normalizing flows, a neural network class able to generate statistically independent samples from a given distribution. With this approach, not only are correlations between visited paths removed, but the sampling process becomes easily parallelizable. Moreover, by conditioning the normalizing flow, the sampling of configurations can be steered towards regions of interest. We show that this approach enables the resolution of both the thermodynamics and kinetics of the transition region for systems that can be sampled using exact-likelihood generative models.</description><identifier>ISSN: 2632-2153</identifier><identifier>EISSN: 2632-2153</identifier><identifier>DOI: 10.1088/2632-2153/acf55c</identifier><identifier>CODEN: MLSTCK</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Conditioning ; Configurations ; enhanced sampling ; Neural networks ; normalizing flows ; Random walk ; rare events ; Sampling ; Statistical analysis ; statistical mechanics ; transition path sampling</subject><ispartof>Machine learning: science and technology, 2023-09, Vol.4 (3), p.35050</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><rights>2023 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-b8471e0b07dc388b669a44fb973b90195c27919345ed6cd1765e37563270a8f23</citedby><cites>FETCH-LOGICAL-c416t-b8471e0b07dc388b669a44fb973b90195c27919345ed6cd1765e37563270a8f23</cites><orcidid>0000-0002-7131-3210 ; 0000-0003-0268-6547 ; 0000-0002-9762-9125 ; 0000-0001-9166-6235 ; 0000-0003-2640-1761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2632-2153/acf55c/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Falkner, Sebastian</creatorcontrib><creatorcontrib>Coretti, Alessandro</creatorcontrib><creatorcontrib>Romano, Salvatore</creatorcontrib><creatorcontrib>Geissler, Phillip L</creatorcontrib><creatorcontrib>Dellago, Christoph</creatorcontrib><title>Conditioning Boltzmann generators for rare event sampling</title><title>Machine learning: science and technology</title><addtitle>MLST</addtitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><description>Understanding the dynamics of complex molecular processes is often linked to the study of infrequent transitions between long-lived stable states. The standard approach to the sampling of such rare events is to generate an ensemble of transition paths using a random walk in trajectory space. This, however, comes with the drawback of strong correlations between subsequently sampled paths and with an intrinsic difficulty in parallelizing the sampling process. We propose a transition path sampling scheme based on neural-network generated configurations. These are obtained employing normalizing flows, a neural network class able to generate statistically independent samples from a given distribution. With this approach, not only are correlations between visited paths removed, but the sampling process becomes easily parallelizable. Moreover, by conditioning the normalizing flow, the sampling of configurations can be steered towards regions of interest. We show that this approach enables the resolution of both the thermodynamics and kinetics of the transition region for systems that can be sampled using exact-likelihood generative models.</description><subject>Conditioning</subject><subject>Configurations</subject><subject>enhanced sampling</subject><subject>Neural networks</subject><subject>normalizing flows</subject><subject>Random walk</subject><subject>rare events</subject><subject>Sampling</subject><subject>Statistical analysis</subject><subject>statistical mechanics</subject><subject>transition path sampling</subject><issn>2632-2153</issn><issn>2632-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp1kEtLAzEUhYMoWGr3LgfcOjbvx1IHH4WCG12HTCYpU6bJmEwF_fVOHaluXN3L5ZxzDx8AlwjeICjlEnOCS4wYWRrrGbMnYHY8nf7Zz8Ei5y2EEDNEGIYzoKoYmnZoY2jDpriL3fC5MyEUGxdcMkNMufAxFckkV7h3F4Yim13fjeILcOZNl93iZ87B68P9S_VUrp8fV9XturQU8aGsJRXIwRqKxhIpa86VodTXSpBaQaSYxUIhRShzDbcNEpw5ItjYWEAjPSZzsJpym2i2uk_tzqQPHU2rvw8xbbRJQ2s7p7HA1kHKnWKGWs-VQN5RWtdM-QZROmZdTVl9im97lwe9jfsUxvoaSy6YVGPnUQUnlU0x5-T88SuC-sBbH4DqA1A98R4t15Oljf1v5r_yL8yTfx4</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Falkner, Sebastian</creator><creator>Coretti, Alessandro</creator><creator>Romano, Salvatore</creator><creator>Geissler, Phillip L</creator><creator>Dellago, Christoph</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7131-3210</orcidid><orcidid>https://orcid.org/0000-0003-0268-6547</orcidid><orcidid>https://orcid.org/0000-0002-9762-9125</orcidid><orcidid>https://orcid.org/0000-0001-9166-6235</orcidid><orcidid>https://orcid.org/0000-0003-2640-1761</orcidid></search><sort><creationdate>20230901</creationdate><title>Conditioning Boltzmann generators for rare event sampling</title><author>Falkner, Sebastian ; Coretti, Alessandro ; Romano, Salvatore ; Geissler, Phillip L ; Dellago, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-b8471e0b07dc388b669a44fb973b90195c27919345ed6cd1765e37563270a8f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Conditioning</topic><topic>Configurations</topic><topic>enhanced sampling</topic><topic>Neural networks</topic><topic>normalizing flows</topic><topic>Random walk</topic><topic>rare events</topic><topic>Sampling</topic><topic>Statistical analysis</topic><topic>statistical mechanics</topic><topic>transition path sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falkner, Sebastian</creatorcontrib><creatorcontrib>Coretti, Alessandro</creatorcontrib><creatorcontrib>Romano, Salvatore</creatorcontrib><creatorcontrib>Geissler, Phillip L</creatorcontrib><creatorcontrib>Dellago, Christoph</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Machine learning: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falkner, Sebastian</au><au>Coretti, Alessandro</au><au>Romano, Salvatore</au><au>Geissler, Phillip L</au><au>Dellago, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditioning Boltzmann generators for rare event sampling</atitle><jtitle>Machine learning: science and technology</jtitle><stitle>MLST</stitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>4</volume><issue>3</issue><spage>35050</spage><pages>35050-</pages><issn>2632-2153</issn><eissn>2632-2153</eissn><coden>MLSTCK</coden><abstract>Understanding the dynamics of complex molecular processes is often linked to the study of infrequent transitions between long-lived stable states. The standard approach to the sampling of such rare events is to generate an ensemble of transition paths using a random walk in trajectory space. This, however, comes with the drawback of strong correlations between subsequently sampled paths and with an intrinsic difficulty in parallelizing the sampling process. We propose a transition path sampling scheme based on neural-network generated configurations. These are obtained employing normalizing flows, a neural network class able to generate statistically independent samples from a given distribution. With this approach, not only are correlations between visited paths removed, but the sampling process becomes easily parallelizable. Moreover, by conditioning the normalizing flow, the sampling of configurations can be steered towards regions of interest. We show that this approach enables the resolution of both the thermodynamics and kinetics of the transition region for systems that can be sampled using exact-likelihood generative models.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2632-2153/acf55c</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7131-3210</orcidid><orcidid>https://orcid.org/0000-0003-0268-6547</orcidid><orcidid>https://orcid.org/0000-0002-9762-9125</orcidid><orcidid>https://orcid.org/0000-0001-9166-6235</orcidid><orcidid>https://orcid.org/0000-0003-2640-1761</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2632-2153
ispartof Machine learning: science and technology, 2023-09, Vol.4 (3), p.35050
issn 2632-2153
2632-2153
language eng
recordid cdi_proquest_journals_2867589416
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Conditioning
Configurations
enhanced sampling
Neural networks
normalizing flows
Random walk
rare events
Sampling
Statistical analysis
statistical mechanics
transition path sampling
title Conditioning Boltzmann generators for rare event sampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditioning%20Boltzmann%20generators%20for%20rare%20event%20sampling&rft.jtitle=Machine%20learning:%20science%20and%20technology&rft.au=Falkner,%20Sebastian&rft.date=2023-09-01&rft.volume=4&rft.issue=3&rft.spage=35050&rft.pages=35050-&rft.issn=2632-2153&rft.eissn=2632-2153&rft.coden=MLSTCK&rft_id=info:doi/10.1088/2632-2153/acf55c&rft_dat=%3Cproquest_doaj_%3E2867589416%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2867589416&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_272ce046e95a4cf6971fe44bb59fd144&rfr_iscdi=true