Post-earthquake Rapid Assessment Method for Electrical Function of Equipment in Substations
To assess the electrical function of equipment in substations after earthquakes, a rapid assessment method integrating electrical function conversion relation, numerical simulation and map proxy model was introduced. An intermediate mechanical index (IMI) directly related to electrical function coul...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power delivery 2023-10, Vol.38 (5), p.1-9 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE transactions on power delivery |
container_volume | 38 |
creator | Zhu, Wang Wu, Minger Xie, Qiang Chen, Yunlong |
description | To assess the electrical function of equipment in substations after earthquakes, a rapid assessment method integrating electrical function conversion relation, numerical simulation and map proxy model was introduced. An intermediate mechanical index (IMI) directly related to electrical function could be defined through various theoretical analyses. And a simulation model of equipment is developed for obtaining seismic response data of IMI and easily monitored mechanical indices (EMI). Afterward, a composite map, specifically from the EMI to electrical function, could be formed mathematically by combining the aforementioned conversion and simulation model. Using the response data as training samples, the map would be represented by a proxy model embedded individual or ensemble machine learning algorithms. Once the actual seismic responses are collected by monitoring during earthquakes, the post-earthquake assessment would be conducted based on the input-output operation of the map proxy model. Finally, a practical case was studied using the approach for the electrical contact status of a grid-side bushing installed on a transformer. The error analysis corroborated the accuracy and usefulness of this proposed method. It can be employed analogously for post-earthquake assessments of other equipment and electrical functions, although only one example has validated the feasibility in this paper. |
doi_str_mv | 10.1109/TPWRD.2023.3270178 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2867397127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10107905</ieee_id><sourcerecordid>2867397127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-37dc64fc4d6b1cccd5b8f373482728c1f1587da4033979550533fb37eb64111f3</originalsourceid><addsrcrecordid>eNpNkL1OwzAURi0EEqXwAojBEnOK_xLbY1VaQCqiKkUMDJbj2GpKG6e2M_D2pC0D0x3ud757dQC4xWiEMZIPq8Xn8nFEEKEjSjjCXJyBAZaUZ4wgcQ4GSIg8E5LzS3AV4wYhxJBEA_C18DFlVoe03nf628KlbusKjmO0Me5sk-CrTWtfQecDnG6tSaE2egtnXWNS7RvoHZzuu7o9ZusGvndlTPqwitfgwulttDd_cwg-ZtPV5Dmbvz29TMbzzBBZpIzyyhTMGVYVJTbGVHkpHOWUCcKJMNjhXPBKM0Sp5DLPUU6pKym3ZcEwxo4Owf2ptw1-39mY1MZ3oelPKiIK3lOY8D5FTikTfIzBOtWGeqfDj8JIHSSqo0R1kKj-JPbQ3QmqrbX_AIy47P_4BT1YblA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2867397127</pqid></control><display><type>article</type><title>Post-earthquake Rapid Assessment Method for Electrical Function of Equipment in Substations</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Wang ; Wu, Minger ; Xie, Qiang ; Chen, Yunlong</creator><creatorcontrib>Zhu, Wang ; Wu, Minger ; Xie, Qiang ; Chen, Yunlong</creatorcontrib><description>To assess the electrical function of equipment in substations after earthquakes, a rapid assessment method integrating electrical function conversion relation, numerical simulation and map proxy model was introduced. An intermediate mechanical index (IMI) directly related to electrical function could be defined through various theoretical analyses. And a simulation model of equipment is developed for obtaining seismic response data of IMI and easily monitored mechanical indices (EMI). Afterward, a composite map, specifically from the EMI to electrical function, could be formed mathematically by combining the aforementioned conversion and simulation model. Using the response data as training samples, the map would be represented by a proxy model embedded individual or ensemble machine learning algorithms. Once the actual seismic responses are collected by monitoring during earthquakes, the post-earthquake assessment would be conducted based on the input-output operation of the map proxy model. Finally, a practical case was studied using the approach for the electrical contact status of a grid-side bushing installed on a transformer. The error analysis corroborated the accuracy and usefulness of this proposed method. It can be employed analogously for post-earthquake assessments of other equipment and electrical functions, although only one example has validated the feasibility in this paper.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2023.3270178</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Analytical models ; Assessments ; Computer simulation ; Contacts ; Conversion ; Earthquakes ; Electric contacts ; electrical contact status ; electrical function ; Error analysis ; Indexes ; Machine learning ; map proxy model ; Monitoring ; Numerical models ; Post-earthquake assessment ; Seismic response ; Simulation ; Simulation models ; Substations</subject><ispartof>IEEE transactions on power delivery, 2023-10, Vol.38 (5), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-37dc64fc4d6b1cccd5b8f373482728c1f1587da4033979550533fb37eb64111f3</citedby><cites>FETCH-LOGICAL-c296t-37dc64fc4d6b1cccd5b8f373482728c1f1587da4033979550533fb37eb64111f3</cites><orcidid>0000-0003-3844-8014 ; 0000-0002-3252-9457 ; 0000-0001-8884-4774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10107905$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10107905$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Wang</creatorcontrib><creatorcontrib>Wu, Minger</creatorcontrib><creatorcontrib>Xie, Qiang</creatorcontrib><creatorcontrib>Chen, Yunlong</creatorcontrib><title>Post-earthquake Rapid Assessment Method for Electrical Function of Equipment in Substations</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>To assess the electrical function of equipment in substations after earthquakes, a rapid assessment method integrating electrical function conversion relation, numerical simulation and map proxy model was introduced. An intermediate mechanical index (IMI) directly related to electrical function could be defined through various theoretical analyses. And a simulation model of equipment is developed for obtaining seismic response data of IMI and easily monitored mechanical indices (EMI). Afterward, a composite map, specifically from the EMI to electrical function, could be formed mathematically by combining the aforementioned conversion and simulation model. Using the response data as training samples, the map would be represented by a proxy model embedded individual or ensemble machine learning algorithms. Once the actual seismic responses are collected by monitoring during earthquakes, the post-earthquake assessment would be conducted based on the input-output operation of the map proxy model. Finally, a practical case was studied using the approach for the electrical contact status of a grid-side bushing installed on a transformer. The error analysis corroborated the accuracy and usefulness of this proposed method. It can be employed analogously for post-earthquake assessments of other equipment and electrical functions, although only one example has validated the feasibility in this paper.</description><subject>Algorithms</subject><subject>Analytical models</subject><subject>Assessments</subject><subject>Computer simulation</subject><subject>Contacts</subject><subject>Conversion</subject><subject>Earthquakes</subject><subject>Electric contacts</subject><subject>electrical contact status</subject><subject>electrical function</subject><subject>Error analysis</subject><subject>Indexes</subject><subject>Machine learning</subject><subject>map proxy model</subject><subject>Monitoring</subject><subject>Numerical models</subject><subject>Post-earthquake assessment</subject><subject>Seismic response</subject><subject>Simulation</subject><subject>Simulation models</subject><subject>Substations</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1OwzAURi0EEqXwAojBEnOK_xLbY1VaQCqiKkUMDJbj2GpKG6e2M_D2pC0D0x3ud757dQC4xWiEMZIPq8Xn8nFEEKEjSjjCXJyBAZaUZ4wgcQ4GSIg8E5LzS3AV4wYhxJBEA_C18DFlVoe03nf628KlbusKjmO0Me5sk-CrTWtfQecDnG6tSaE2egtnXWNS7RvoHZzuu7o9ZusGvndlTPqwitfgwulttDd_cwg-ZtPV5Dmbvz29TMbzzBBZpIzyyhTMGVYVJTbGVHkpHOWUCcKJMNjhXPBKM0Sp5DLPUU6pKym3ZcEwxo4Owf2ptw1-39mY1MZ3oelPKiIK3lOY8D5FTikTfIzBOtWGeqfDj8JIHSSqo0R1kKj-JPbQ3QmqrbX_AIy47P_4BT1YblA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Zhu, Wang</creator><creator>Wu, Minger</creator><creator>Xie, Qiang</creator><creator>Chen, Yunlong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3844-8014</orcidid><orcidid>https://orcid.org/0000-0002-3252-9457</orcidid><orcidid>https://orcid.org/0000-0001-8884-4774</orcidid></search><sort><creationdate>20231001</creationdate><title>Post-earthquake Rapid Assessment Method for Electrical Function of Equipment in Substations</title><author>Zhu, Wang ; Wu, Minger ; Xie, Qiang ; Chen, Yunlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-37dc64fc4d6b1cccd5b8f373482728c1f1587da4033979550533fb37eb64111f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analytical models</topic><topic>Assessments</topic><topic>Computer simulation</topic><topic>Contacts</topic><topic>Conversion</topic><topic>Earthquakes</topic><topic>Electric contacts</topic><topic>electrical contact status</topic><topic>electrical function</topic><topic>Error analysis</topic><topic>Indexes</topic><topic>Machine learning</topic><topic>map proxy model</topic><topic>Monitoring</topic><topic>Numerical models</topic><topic>Post-earthquake assessment</topic><topic>Seismic response</topic><topic>Simulation</topic><topic>Simulation models</topic><topic>Substations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Wang</creatorcontrib><creatorcontrib>Wu, Minger</creatorcontrib><creatorcontrib>Xie, Qiang</creatorcontrib><creatorcontrib>Chen, Yunlong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Wang</au><au>Wu, Minger</au><au>Xie, Qiang</au><au>Chen, Yunlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post-earthquake Rapid Assessment Method for Electrical Function of Equipment in Substations</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>38</volume><issue>5</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>To assess the electrical function of equipment in substations after earthquakes, a rapid assessment method integrating electrical function conversion relation, numerical simulation and map proxy model was introduced. An intermediate mechanical index (IMI) directly related to electrical function could be defined through various theoretical analyses. And a simulation model of equipment is developed for obtaining seismic response data of IMI and easily monitored mechanical indices (EMI). Afterward, a composite map, specifically from the EMI to electrical function, could be formed mathematically by combining the aforementioned conversion and simulation model. Using the response data as training samples, the map would be represented by a proxy model embedded individual or ensemble machine learning algorithms. Once the actual seismic responses are collected by monitoring during earthquakes, the post-earthquake assessment would be conducted based on the input-output operation of the map proxy model. Finally, a practical case was studied using the approach for the electrical contact status of a grid-side bushing installed on a transformer. The error analysis corroborated the accuracy and usefulness of this proposed method. It can be employed analogously for post-earthquake assessments of other equipment and electrical functions, although only one example has validated the feasibility in this paper.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2023.3270178</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3844-8014</orcidid><orcidid>https://orcid.org/0000-0002-3252-9457</orcidid><orcidid>https://orcid.org/0000-0001-8884-4774</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8977 |
ispartof | IEEE transactions on power delivery, 2023-10, Vol.38 (5), p.1-9 |
issn | 0885-8977 1937-4208 |
language | eng |
recordid | cdi_proquest_journals_2867397127 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Analytical models Assessments Computer simulation Contacts Conversion Earthquakes Electric contacts electrical contact status electrical function Error analysis Indexes Machine learning map proxy model Monitoring Numerical models Post-earthquake assessment Seismic response Simulation Simulation models Substations |
title | Post-earthquake Rapid Assessment Method for Electrical Function of Equipment in Substations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T07%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post-earthquake%20Rapid%20Assessment%20Method%20for%20Electrical%20Function%20of%20Equipment%20in%20Substations&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Zhu,%20Wang&rft.date=2023-10-01&rft.volume=38&rft.issue=5&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2023.3270178&rft_dat=%3Cproquest_RIE%3E2867397127%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2867397127&rft_id=info:pmid/&rft_ieee_id=10107905&rfr_iscdi=true |