Broad Spectrum Image Deblurring via an Adaptive Super-Network
In blurry images, the degree of image blurs may vary drastically due to different factors, such as varying speeds of shaking cameras and moving objects, as well as defects of the camera lens. However, current end-to-end models failed to explicitly take into account such diversity of blurs. This unaw...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2023, Vol.32, p.5270-5282 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5282 |
---|---|
container_issue | |
container_start_page | 5270 |
container_title | IEEE transactions on image processing |
container_volume | 32 |
creator | Wu, Qiucheng Jiang, Yifan Wu, Junru Kulikov, Victor Goel, Vidit Orlov, Nikita Shi, Humphrey Wang, Zhangyang Chang, Shiyu |
description | In blurry images, the degree of image blurs may vary drastically due to different factors, such as varying speeds of shaking cameras and moving objects, as well as defects of the camera lens. However, current end-to-end models failed to explicitly take into account such diversity of blurs. This unawareness compromises the specialization at each blur level, yielding sub-optimal deblurred images as well as redundant post-processing. Therefore, how to specialize one model simultaneously at different blur levels, while still ensuring coverage and generalization, becomes an emerging challenge. In this work, we propose Ada-Deblur, a super-network that can be applied to a "broad spectrum" of blur levels with no re-training on novel blurs. To balance between individual blur level specialization and wide-range blur levels coverage, the key idea is to dynamically adapt the network architectures from a single well-trained super-network structure, targeting flexible image processing with different deblurring capacities at test time. Extensive experiments demonstrate that our work outperforms strong baselines by demonstrating better reconstruction accuracy while incurring minimal computational overhead. Besides, we show that our method is effective for both synthetic and realistic blurs compared to these baselines. The performance gap between our model and the state-of-the-art becomes more prominent when testing with unseen and strong blur levels. Specifically, our model demonstrates surprising deblurring performance on these images with PSNR improvements of around 1 dB. Our code is publicly available at https://github.com/wuqiuche/Ada-Deblur . |
doi_str_mv | 10.1109/TIP.2023.3312912 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2867396276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10254493</ieee_id><sourcerecordid>2867396276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-81397019db7ebe96d8d92bf25ee8039b9bd6d9fe72534f81edb5f1ea925d6fe93</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EoqWwMzBEYmFJ8dmJHQ8MpXxVqgCpZbac-FKlJE2wkyL-PanaATHdDc_76u4h5BLoGICq2-Xsfcwo42POgSlgR2QIKoKQ0ogd9zuNZSghUgNy5v2aUohiEKdkwKVkkEg2JHf3rjY2WDSYta6rglllVhg8YFp2zhWbVbAtTGA2wcSapi22GCy6Bl34iu137T7PyUluSo8XhzkiH0-Py-lLOH97nk0n8zBjMmnDBLiSFJRNJaaohE2sYmnOYsSEcpWq1AqrcpQs5lGeANo0zgGNYrEVOSo-Ijf73sbVXx36VleFz7AszQbrzmuWCNH_RCX06PU_dF13btNft6MkV4JJ0VN0T2Wu9t5hrhtXVMb9aKB6p1b3avVOrT6o7SNX-0iBiH9wFkeR4vwXdZFxtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2867396276</pqid></control><display><type>article</type><title>Broad Spectrum Image Deblurring via an Adaptive Super-Network</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Qiucheng ; Jiang, Yifan ; Wu, Junru ; Kulikov, Victor ; Goel, Vidit ; Orlov, Nikita ; Shi, Humphrey ; Wang, Zhangyang ; Chang, Shiyu</creator><creatorcontrib>Wu, Qiucheng ; Jiang, Yifan ; Wu, Junru ; Kulikov, Victor ; Goel, Vidit ; Orlov, Nikita ; Shi, Humphrey ; Wang, Zhangyang ; Chang, Shiyu</creatorcontrib><description>In blurry images, the degree of image blurs may vary drastically due to different factors, such as varying speeds of shaking cameras and moving objects, as well as defects of the camera lens. However, current end-to-end models failed to explicitly take into account such diversity of blurs. This unawareness compromises the specialization at each blur level, yielding sub-optimal deblurred images as well as redundant post-processing. Therefore, how to specialize one model simultaneously at different blur levels, while still ensuring coverage and generalization, becomes an emerging challenge. In this work, we propose Ada-Deblur, a super-network that can be applied to a "broad spectrum" of blur levels with no re-training on novel blurs. To balance between individual blur level specialization and wide-range blur levels coverage, the key idea is to dynamically adapt the network architectures from a single well-trained super-network structure, targeting flexible image processing with different deblurring capacities at test time. Extensive experiments demonstrate that our work outperforms strong baselines by demonstrating better reconstruction accuracy while incurring minimal computational overhead. Besides, we show that our method is effective for both synthetic and realistic blurs compared to these baselines. The performance gap between our model and the state-of-the-art becomes more prominent when testing with unseen and strong blur levels. Specifically, our model demonstrates surprising deblurring performance on these images with PSNR improvements of around 1 dB. Our code is publicly available at https://github.com/wuqiuche/Ada-Deblur .</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2023.3312912</identifier><identifier>PMID: 37721872</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; adaptive network ; Cameras ; Computer architecture ; Image processing ; Image reconstruction ; Image restoration ; Kernel ; Network architecture ; Shaking ; Task analysis ; Training</subject><ispartof>IEEE transactions on image processing, 2023, Vol.32, p.5270-5282</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-81397019db7ebe96d8d92bf25ee8039b9bd6d9fe72534f81edb5f1ea925d6fe93</cites><orcidid>0000-0003-1026-8783 ; 0000-0002-2050-5693 ; 0000-0002-7113-305X ; 0000-0001-8483-6363 ; 0000-0003-4443-0873 ; 0000-0002-2922-5663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10254493$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10254493$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Qiucheng</creatorcontrib><creatorcontrib>Jiang, Yifan</creatorcontrib><creatorcontrib>Wu, Junru</creatorcontrib><creatorcontrib>Kulikov, Victor</creatorcontrib><creatorcontrib>Goel, Vidit</creatorcontrib><creatorcontrib>Orlov, Nikita</creatorcontrib><creatorcontrib>Shi, Humphrey</creatorcontrib><creatorcontrib>Wang, Zhangyang</creatorcontrib><creatorcontrib>Chang, Shiyu</creatorcontrib><title>Broad Spectrum Image Deblurring via an Adaptive Super-Network</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>In blurry images, the degree of image blurs may vary drastically due to different factors, such as varying speeds of shaking cameras and moving objects, as well as defects of the camera lens. However, current end-to-end models failed to explicitly take into account such diversity of blurs. This unawareness compromises the specialization at each blur level, yielding sub-optimal deblurred images as well as redundant post-processing. Therefore, how to specialize one model simultaneously at different blur levels, while still ensuring coverage and generalization, becomes an emerging challenge. In this work, we propose Ada-Deblur, a super-network that can be applied to a "broad spectrum" of blur levels with no re-training on novel blurs. To balance between individual blur level specialization and wide-range blur levels coverage, the key idea is to dynamically adapt the network architectures from a single well-trained super-network structure, targeting flexible image processing with different deblurring capacities at test time. Extensive experiments demonstrate that our work outperforms strong baselines by demonstrating better reconstruction accuracy while incurring minimal computational overhead. Besides, we show that our method is effective for both synthetic and realistic blurs compared to these baselines. The performance gap between our model and the state-of-the-art becomes more prominent when testing with unseen and strong blur levels. Specifically, our model demonstrates surprising deblurring performance on these images with PSNR improvements of around 1 dB. Our code is publicly available at https://github.com/wuqiuche/Ada-Deblur .</description><subject>Adaptation models</subject><subject>adaptive network</subject><subject>Cameras</subject><subject>Computer architecture</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Image restoration</subject><subject>Kernel</subject><subject>Network architecture</subject><subject>Shaking</subject><subject>Task analysis</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EoqWwMzBEYmFJ8dmJHQ8MpXxVqgCpZbac-FKlJE2wkyL-PanaATHdDc_76u4h5BLoGICq2-Xsfcwo42POgSlgR2QIKoKQ0ogd9zuNZSghUgNy5v2aUohiEKdkwKVkkEg2JHf3rjY2WDSYta6rglllVhg8YFp2zhWbVbAtTGA2wcSapi22GCy6Bl34iu137T7PyUluSo8XhzkiH0-Py-lLOH97nk0n8zBjMmnDBLiSFJRNJaaohE2sYmnOYsSEcpWq1AqrcpQs5lGeANo0zgGNYrEVOSo-Ijf73sbVXx36VleFz7AszQbrzmuWCNH_RCX06PU_dF13btNft6MkV4JJ0VN0T2Wu9t5hrhtXVMb9aKB6p1b3avVOrT6o7SNX-0iBiH9wFkeR4vwXdZFxtg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Wu, Qiucheng</creator><creator>Jiang, Yifan</creator><creator>Wu, Junru</creator><creator>Kulikov, Victor</creator><creator>Goel, Vidit</creator><creator>Orlov, Nikita</creator><creator>Shi, Humphrey</creator><creator>Wang, Zhangyang</creator><creator>Chang, Shiyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1026-8783</orcidid><orcidid>https://orcid.org/0000-0002-2050-5693</orcidid><orcidid>https://orcid.org/0000-0002-7113-305X</orcidid><orcidid>https://orcid.org/0000-0001-8483-6363</orcidid><orcidid>https://orcid.org/0000-0003-4443-0873</orcidid><orcidid>https://orcid.org/0000-0002-2922-5663</orcidid></search><sort><creationdate>2023</creationdate><title>Broad Spectrum Image Deblurring via an Adaptive Super-Network</title><author>Wu, Qiucheng ; Jiang, Yifan ; Wu, Junru ; Kulikov, Victor ; Goel, Vidit ; Orlov, Nikita ; Shi, Humphrey ; Wang, Zhangyang ; Chang, Shiyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-81397019db7ebe96d8d92bf25ee8039b9bd6d9fe72534f81edb5f1ea925d6fe93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation models</topic><topic>adaptive network</topic><topic>Cameras</topic><topic>Computer architecture</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Image restoration</topic><topic>Kernel</topic><topic>Network architecture</topic><topic>Shaking</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Qiucheng</creatorcontrib><creatorcontrib>Jiang, Yifan</creatorcontrib><creatorcontrib>Wu, Junru</creatorcontrib><creatorcontrib>Kulikov, Victor</creatorcontrib><creatorcontrib>Goel, Vidit</creatorcontrib><creatorcontrib>Orlov, Nikita</creatorcontrib><creatorcontrib>Shi, Humphrey</creatorcontrib><creatorcontrib>Wang, Zhangyang</creatorcontrib><creatorcontrib>Chang, Shiyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Qiucheng</au><au>Jiang, Yifan</au><au>Wu, Junru</au><au>Kulikov, Victor</au><au>Goel, Vidit</au><au>Orlov, Nikita</au><au>Shi, Humphrey</au><au>Wang, Zhangyang</au><au>Chang, Shiyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broad Spectrum Image Deblurring via an Adaptive Super-Network</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2023</date><risdate>2023</risdate><volume>32</volume><spage>5270</spage><epage>5282</epage><pages>5270-5282</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In blurry images, the degree of image blurs may vary drastically due to different factors, such as varying speeds of shaking cameras and moving objects, as well as defects of the camera lens. However, current end-to-end models failed to explicitly take into account such diversity of blurs. This unawareness compromises the specialization at each blur level, yielding sub-optimal deblurred images as well as redundant post-processing. Therefore, how to specialize one model simultaneously at different blur levels, while still ensuring coverage and generalization, becomes an emerging challenge. In this work, we propose Ada-Deblur, a super-network that can be applied to a "broad spectrum" of blur levels with no re-training on novel blurs. To balance between individual blur level specialization and wide-range blur levels coverage, the key idea is to dynamically adapt the network architectures from a single well-trained super-network structure, targeting flexible image processing with different deblurring capacities at test time. Extensive experiments demonstrate that our work outperforms strong baselines by demonstrating better reconstruction accuracy while incurring minimal computational overhead. Besides, we show that our method is effective for both synthetic and realistic blurs compared to these baselines. The performance gap between our model and the state-of-the-art becomes more prominent when testing with unseen and strong blur levels. Specifically, our model demonstrates surprising deblurring performance on these images with PSNR improvements of around 1 dB. Our code is publicly available at https://github.com/wuqiuche/Ada-Deblur .</abstract><cop>New York</cop><pub>IEEE</pub><pmid>37721872</pmid><doi>10.1109/TIP.2023.3312912</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1026-8783</orcidid><orcidid>https://orcid.org/0000-0002-2050-5693</orcidid><orcidid>https://orcid.org/0000-0002-7113-305X</orcidid><orcidid>https://orcid.org/0000-0001-8483-6363</orcidid><orcidid>https://orcid.org/0000-0003-4443-0873</orcidid><orcidid>https://orcid.org/0000-0002-2922-5663</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2023, Vol.32, p.5270-5282 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_journals_2867396276 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models adaptive network Cameras Computer architecture Image processing Image reconstruction Image restoration Kernel Network architecture Shaking Task analysis Training |
title | Broad Spectrum Image Deblurring via an Adaptive Super-Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broad%20Spectrum%20Image%20Deblurring%20via%20an%20Adaptive%20Super-Network&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Wu,%20Qiucheng&rft.date=2023&rft.volume=32&rft.spage=5270&rft.epage=5282&rft.pages=5270-5282&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2023.3312912&rft_dat=%3Cproquest_RIE%3E2867396276%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2867396276&rft_id=info:pmid/37721872&rft_ieee_id=10254493&rfr_iscdi=true |