Adaptive Maximization of the Harvested Power for Wearable or Implantable Sensors with Coulomb Force Parametric Generators
Miniaturized wearable or implantable medical sensors (or actuators) are important components of the Internet of Things (IoT) in healthcare applications. However, their limited source of power is becoming a bottleneck for pervasive use of these devices, specially, as their functionality increases. Ki...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2023-10, Vol.10 (19), p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 19 |
container_start_page | 1 |
container_title | IEEE internet of things journal |
container_volume | 10 |
creator | Roudneshin, Masoud Sayrafian, Kamran Aghdam, Amir G. |
description | Miniaturized wearable or implantable medical sensors (or actuators) are important components of the Internet of Things (IoT) in healthcare applications. However, their limited source of power is becoming a bottleneck for pervasive use of these devices, specially, as their functionality increases. Kinetic-based micro-energy harvesters can generate power through the natural human body motion. Therefore, they can be an attractive solution to supplement the source of power in medical wearables or implants. The architecture based on the Coulomb force parametric generator (CFPG) is the most viable micro-harvester solution for generating power from the human motion. This paper proposes three methods, namely, linear estimation approach, multi-armed bandit, a min-max-based approach to adaptively estimate the desirable electrostatic force in a CFPG using the input acceleration waveform. Through extensive simulations, the performance of the proposed methods in maximizing the output power of the micro-harvester is evaluated. |
doi_str_mv | 10.1109/JIOT.2023.3269953 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2867392762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10107734</ieee_id><sourcerecordid>2867392762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-c2fe08e590548e1d65b567350868e220afe4afb22d23ae763e1e8d32e41fc06d3</originalsourceid><addsrcrecordid>eNpNkEtrAjEUhUNpoWL9AYUuAl1r85jJzCxF6qNYFGrpMmRmbjDiTKaZqLW_vrG6cHMfcM653A-hR0oGlJLs5W22WA0YYXzAmciymN-gDuMs6UdCsNur-R712nZDCAm2mGaig47DUjXe7AG_qx9TmV_lja2x1divAU-V20ProcRLewCHtXX4C5RT-RZwmGdVs1W1_18_oG6ta_HB-DUe2d3WVjkeW1cAXgZHBd6ZAk-gBqd8ED6gO622LfQuvYs-x6-r0bQ_X0xmo-G8X7BI-FA1kBTijMRRCrQUcR6LhMckFSkwRpSGSOmcsZJxBYngQCEtOYOI6oKIknfR8zm3cfZ7F76RG7tzdTgpWRqSMpYIFlT0rCqcbVsHWjbOVModJSXyBFmeIMsTZHmBHDxPZ48BgCs9JUnCI_4HC5t5ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2867392762</pqid></control><display><type>article</type><title>Adaptive Maximization of the Harvested Power for Wearable or Implantable Sensors with Coulomb Force Parametric Generators</title><source>IEEE Electronic Library Online</source><creator>Roudneshin, Masoud ; Sayrafian, Kamran ; Aghdam, Amir G.</creator><creatorcontrib>Roudneshin, Masoud ; Sayrafian, Kamran ; Aghdam, Amir G.</creatorcontrib><description>Miniaturized wearable or implantable medical sensors (or actuators) are important components of the Internet of Things (IoT) in healthcare applications. However, their limited source of power is becoming a bottleneck for pervasive use of these devices, specially, as their functionality increases. Kinetic-based micro-energy harvesters can generate power through the natural human body motion. Therefore, they can be an attractive solution to supplement the source of power in medical wearables or implants. The architecture based on the Coulomb force parametric generator (CFPG) is the most viable micro-harvester solution for generating power from the human motion. This paper proposes three methods, namely, linear estimation approach, multi-armed bandit, a min-max-based approach to adaptively estimate the desirable electrostatic force in a CFPG using the input acceleration waveform. Through extensive simulations, the performance of the proposed methods in maximizing the output power of the micro-harvester is evaluated.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3269953</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuators ; Algorithms ; Coulomb force parametric generator ; Electronic implants ; Electrostatics ; Energy harvesting ; Force ; Human motion ; Internet of Things ; Internet of Things in Healthcare ; Low power wearable sensors ; Mathematical models ; Maximization ; Medical electronics ; Micro-energy harvesting ; Online optimization ; Optimization ; Power generation ; Sensors ; Surgical implants ; Waveforms ; Wearable sensors ; Wearable technology</subject><ispartof>IEEE internet of things journal, 2023-10, Vol.10 (19), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-c2fe08e590548e1d65b567350868e220afe4afb22d23ae763e1e8d32e41fc06d3</cites><orcidid>0000-0003-4386-6923 ; 0000-0002-1395-7448 ; 0000-0001-5180-0508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10107734$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10107734$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roudneshin, Masoud</creatorcontrib><creatorcontrib>Sayrafian, Kamran</creatorcontrib><creatorcontrib>Aghdam, Amir G.</creatorcontrib><title>Adaptive Maximization of the Harvested Power for Wearable or Implantable Sensors with Coulomb Force Parametric Generators</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Miniaturized wearable or implantable medical sensors (or actuators) are important components of the Internet of Things (IoT) in healthcare applications. However, their limited source of power is becoming a bottleneck for pervasive use of these devices, specially, as their functionality increases. Kinetic-based micro-energy harvesters can generate power through the natural human body motion. Therefore, they can be an attractive solution to supplement the source of power in medical wearables or implants. The architecture based on the Coulomb force parametric generator (CFPG) is the most viable micro-harvester solution for generating power from the human motion. This paper proposes three methods, namely, linear estimation approach, multi-armed bandit, a min-max-based approach to adaptively estimate the desirable electrostatic force in a CFPG using the input acceleration waveform. Through extensive simulations, the performance of the proposed methods in maximizing the output power of the micro-harvester is evaluated.</description><subject>Actuators</subject><subject>Algorithms</subject><subject>Coulomb force parametric generator</subject><subject>Electronic implants</subject><subject>Electrostatics</subject><subject>Energy harvesting</subject><subject>Force</subject><subject>Human motion</subject><subject>Internet of Things</subject><subject>Internet of Things in Healthcare</subject><subject>Low power wearable sensors</subject><subject>Mathematical models</subject><subject>Maximization</subject><subject>Medical electronics</subject><subject>Micro-energy harvesting</subject><subject>Online optimization</subject><subject>Optimization</subject><subject>Power generation</subject><subject>Sensors</subject><subject>Surgical implants</subject><subject>Waveforms</subject><subject>Wearable sensors</subject><subject>Wearable technology</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtrAjEUhUNpoWL9AYUuAl1r85jJzCxF6qNYFGrpMmRmbjDiTKaZqLW_vrG6cHMfcM653A-hR0oGlJLs5W22WA0YYXzAmciymN-gDuMs6UdCsNur-R712nZDCAm2mGaig47DUjXe7AG_qx9TmV_lja2x1divAU-V20ProcRLewCHtXX4C5RT-RZwmGdVs1W1_18_oG6ta_HB-DUe2d3WVjkeW1cAXgZHBd6ZAk-gBqd8ED6gO622LfQuvYs-x6-r0bQ_X0xmo-G8X7BI-FA1kBTijMRRCrQUcR6LhMckFSkwRpSGSOmcsZJxBYngQCEtOYOI6oKIknfR8zm3cfZ7F76RG7tzdTgpWRqSMpYIFlT0rCqcbVsHWjbOVModJSXyBFmeIMsTZHmBHDxPZ48BgCs9JUnCI_4HC5t5ow</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Roudneshin, Masoud</creator><creator>Sayrafian, Kamran</creator><creator>Aghdam, Amir G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4386-6923</orcidid><orcidid>https://orcid.org/0000-0002-1395-7448</orcidid><orcidid>https://orcid.org/0000-0001-5180-0508</orcidid></search><sort><creationdate>20231001</creationdate><title>Adaptive Maximization of the Harvested Power for Wearable or Implantable Sensors with Coulomb Force Parametric Generators</title><author>Roudneshin, Masoud ; Sayrafian, Kamran ; Aghdam, Amir G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-c2fe08e590548e1d65b567350868e220afe4afb22d23ae763e1e8d32e41fc06d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Algorithms</topic><topic>Coulomb force parametric generator</topic><topic>Electronic implants</topic><topic>Electrostatics</topic><topic>Energy harvesting</topic><topic>Force</topic><topic>Human motion</topic><topic>Internet of Things</topic><topic>Internet of Things in Healthcare</topic><topic>Low power wearable sensors</topic><topic>Mathematical models</topic><topic>Maximization</topic><topic>Medical electronics</topic><topic>Micro-energy harvesting</topic><topic>Online optimization</topic><topic>Optimization</topic><topic>Power generation</topic><topic>Sensors</topic><topic>Surgical implants</topic><topic>Waveforms</topic><topic>Wearable sensors</topic><topic>Wearable technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Roudneshin, Masoud</creatorcontrib><creatorcontrib>Sayrafian, Kamran</creatorcontrib><creatorcontrib>Aghdam, Amir G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roudneshin, Masoud</au><au>Sayrafian, Kamran</au><au>Aghdam, Amir G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Maximization of the Harvested Power for Wearable or Implantable Sensors with Coulomb Force Parametric Generators</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>10</volume><issue>19</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Miniaturized wearable or implantable medical sensors (or actuators) are important components of the Internet of Things (IoT) in healthcare applications. However, their limited source of power is becoming a bottleneck for pervasive use of these devices, specially, as their functionality increases. Kinetic-based micro-energy harvesters can generate power through the natural human body motion. Therefore, they can be an attractive solution to supplement the source of power in medical wearables or implants. The architecture based on the Coulomb force parametric generator (CFPG) is the most viable micro-harvester solution for generating power from the human motion. This paper proposes three methods, namely, linear estimation approach, multi-armed bandit, a min-max-based approach to adaptively estimate the desirable electrostatic force in a CFPG using the input acceleration waveform. Through extensive simulations, the performance of the proposed methods in maximizing the output power of the micro-harvester is evaluated.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3269953</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4386-6923</orcidid><orcidid>https://orcid.org/0000-0002-1395-7448</orcidid><orcidid>https://orcid.org/0000-0001-5180-0508</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2023-10, Vol.10 (19), p.1-1 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_proquest_journals_2867392762 |
source | IEEE Electronic Library Online |
subjects | Actuators Algorithms Coulomb force parametric generator Electronic implants Electrostatics Energy harvesting Force Human motion Internet of Things Internet of Things in Healthcare Low power wearable sensors Mathematical models Maximization Medical electronics Micro-energy harvesting Online optimization Optimization Power generation Sensors Surgical implants Waveforms Wearable sensors Wearable technology |
title | Adaptive Maximization of the Harvested Power for Wearable or Implantable Sensors with Coulomb Force Parametric Generators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A09%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Maximization%20of%20the%20Harvested%20Power%20for%20Wearable%20or%20Implantable%20Sensors%20with%20Coulomb%20Force%20Parametric%20Generators&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Roudneshin,%20Masoud&rft.date=2023-10-01&rft.volume=10&rft.issue=19&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3269953&rft_dat=%3Cproquest_RIE%3E2867392762%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2867392762&rft_id=info:pmid/&rft_ieee_id=10107734&rfr_iscdi=true |