Facile Fabrication of Room Temperature Based H2S Gas Sensor Using ZTO-Ag@PPy Hybrid Nanocomposite
In this study, Zinc stannate-silver (ZTO-Ag) nanoparticles are produced using the customary hydrothermal technique, followed by in-situ chemical oxidative polymerization, resulted in varied weight percentages (0, 5, 10, and 15 wt%) of ZTO-Ag@PPy nano-composites. The prepared composites are character...
Gespeichert in:
Veröffentlicht in: | Journal of inorganic and organometallic polymers and materials 2023-09, Vol.33 (9), p.2752-2764 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2764 |
---|---|
container_issue | 9 |
container_start_page | 2752 |
container_title | Journal of inorganic and organometallic polymers and materials |
container_volume | 33 |
creator | Pagar, Sahebrao B. Ghorude, Tatyarao N. Deshpande, Mrinalini D. SenthilKannan, K. |
description | In this study, Zinc stannate-silver (ZTO-Ag) nanoparticles are produced using the customary hydrothermal technique, followed by in-situ chemical oxidative polymerization, resulted in varied weight percentages (0, 5, 10, and 15 wt%) of ZTO-Ag@PPy nano-composites. The prepared composites are characterized for powder XRD, FTIR, FESEM and BET analysis. The I–V response of interdigitated electrode (IDE) composite films are studied at room temperature and the band gap for composites was determined using UV–visible. The 10% ZTO-Ag@PPy composite showed the highest dc electrical conductivity and the largest surface area among all the composites. Furthermore, the composites are exposed to H
2
S, NH
3
, CO, CO
2
, NO
2
, and Cl
2
gases. The 10% ZTO-Ag@PPy composite demonstrated the highest selective response for H
2
S gas because there is a significant interaction between the nanoparticles and the polymer chain which results in an effective incorporation of ZTO-Ag nanoparticles in the macromolecular chain. For 15% ZTO-Ag@PPy the agglomeration effect offers more resistance in the path of ions hence composite showed less sensitivity. After being exposed to H
2
S gas, the gas sensing characteristics are properly examined. A composite sensor has a higher sensing range (2–120 ppm), a quicker response, and recovery time, good long-term stability and repeatability towards the H
2
S gas. At room temperature, protonation/deprotonation at the PPy surface, efficient charge carrier interaction at the p-n heterojunction, and a large surface area available for gas adsorption together played a vital role in enhancing the gas sensing capabilities of the wt % ZTO-Ag@PPy composite sensors. |
doi_str_mv | 10.1007/s10904-023-02650-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2867254532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2867254532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-21d18bd15bc628670cd13ac157f1a5535b4c0e39cbdf3731df1b4fcc62b300353</originalsourceid><addsrcrecordid>eNp9kMFOAjEQhhujiYi-gKcmnlc625ZdbiIRMCFCBC5emm63JUvY7douB96GZ-HJLK7Rm4fJzOH7_5n5EboH8giEJD0PZEBYRGIaqs9JlF6gDvCERcA4XP7OjF6jG--3hNCUcOggNZaq2Gk8lpkrlGwKW2Fr8Lu1JV7pstZONnun8bP0Oj8dp_EST6THS1156_DaF9XmdPxYzaPh5mmxOODpIfjk-E1WVtmytr5o9C26MnLn9d1P76L1-GU1mkaz-eR1NJxFisKgiWLIIc1y4Jnqx2k_ISoHKlW43IDknPKMKaLpQGW5oQmF3EDGjApwRsM_nHbRQ-tbO_u5174RW7t3VVgpzn4xZ5zGgYpbSjnrvdNG1K4opTsIIOIcpmjDFCFM8R2mSIOItiIf4Gqj3Z_1P6ovE4l30g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2867254532</pqid></control><display><type>article</type><title>Facile Fabrication of Room Temperature Based H2S Gas Sensor Using ZTO-Ag@PPy Hybrid Nanocomposite</title><source>Springer Nature - Complete Springer Journals</source><creator>Pagar, Sahebrao B. ; Ghorude, Tatyarao N. ; Deshpande, Mrinalini D. ; SenthilKannan, K.</creator><creatorcontrib>Pagar, Sahebrao B. ; Ghorude, Tatyarao N. ; Deshpande, Mrinalini D. ; SenthilKannan, K.</creatorcontrib><description>In this study, Zinc stannate-silver (ZTO-Ag) nanoparticles are produced using the customary hydrothermal technique, followed by in-situ chemical oxidative polymerization, resulted in varied weight percentages (0, 5, 10, and 15 wt%) of ZTO-Ag@PPy nano-composites. The prepared composites are characterized for powder XRD, FTIR, FESEM and BET analysis. The I–V response of interdigitated electrode (IDE) composite films are studied at room temperature and the band gap for composites was determined using UV–visible. The 10% ZTO-Ag@PPy composite showed the highest dc electrical conductivity and the largest surface area among all the composites. Furthermore, the composites are exposed to H
2
S, NH
3
, CO, CO
2
, NO
2
, and Cl
2
gases. The 10% ZTO-Ag@PPy composite demonstrated the highest selective response for H
2
S gas because there is a significant interaction between the nanoparticles and the polymer chain which results in an effective incorporation of ZTO-Ag nanoparticles in the macromolecular chain. For 15% ZTO-Ag@PPy the agglomeration effect offers more resistance in the path of ions hence composite showed less sensitivity. After being exposed to H
2
S gas, the gas sensing characteristics are properly examined. A composite sensor has a higher sensing range (2–120 ppm), a quicker response, and recovery time, good long-term stability and repeatability towards the H
2
S gas. At room temperature, protonation/deprotonation at the PPy surface, efficient charge carrier interaction at the p-n heterojunction, and a large surface area available for gas adsorption together played a vital role in enhancing the gas sensing capabilities of the wt % ZTO-Ag@PPy composite sensors.</description><identifier>ISSN: 1574-1443</identifier><identifier>EISSN: 1574-1451</identifier><identifier>DOI: 10.1007/s10904-023-02650-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ammonia ; Chemistry ; Chemistry and Materials Science ; Current carriers ; Electrical resistivity ; Gas sensors ; Gases ; Heterojunctions ; Hydrogen sulfide ; Inorganic Chemistry ; Molecular chains ; Nanocomposites ; Nanoparticles ; Nitrogen dioxide ; Organic Chemistry ; P-n junctions ; Polymer Sciences ; Protonation ; Recovery time ; Room temperature ; Silver ; Surface area ; Zinc stannate</subject><ispartof>Journal of inorganic and organometallic polymers and materials, 2023-09, Vol.33 (9), p.2752-2764</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-21d18bd15bc628670cd13ac157f1a5535b4c0e39cbdf3731df1b4fcc62b300353</citedby><cites>FETCH-LOGICAL-c319t-21d18bd15bc628670cd13ac157f1a5535b4c0e39cbdf3731df1b4fcc62b300353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10904-023-02650-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10904-023-02650-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pagar, Sahebrao B.</creatorcontrib><creatorcontrib>Ghorude, Tatyarao N.</creatorcontrib><creatorcontrib>Deshpande, Mrinalini D.</creatorcontrib><creatorcontrib>SenthilKannan, K.</creatorcontrib><title>Facile Fabrication of Room Temperature Based H2S Gas Sensor Using ZTO-Ag@PPy Hybrid Nanocomposite</title><title>Journal of inorganic and organometallic polymers and materials</title><addtitle>J Inorg Organomet Polym</addtitle><description>In this study, Zinc stannate-silver (ZTO-Ag) nanoparticles are produced using the customary hydrothermal technique, followed by in-situ chemical oxidative polymerization, resulted in varied weight percentages (0, 5, 10, and 15 wt%) of ZTO-Ag@PPy nano-composites. The prepared composites are characterized for powder XRD, FTIR, FESEM and BET analysis. The I–V response of interdigitated electrode (IDE) composite films are studied at room temperature and the band gap for composites was determined using UV–visible. The 10% ZTO-Ag@PPy composite showed the highest dc electrical conductivity and the largest surface area among all the composites. Furthermore, the composites are exposed to H
2
S, NH
3
, CO, CO
2
, NO
2
, and Cl
2
gases. The 10% ZTO-Ag@PPy composite demonstrated the highest selective response for H
2
S gas because there is a significant interaction between the nanoparticles and the polymer chain which results in an effective incorporation of ZTO-Ag nanoparticles in the macromolecular chain. For 15% ZTO-Ag@PPy the agglomeration effect offers more resistance in the path of ions hence composite showed less sensitivity. After being exposed to H
2
S gas, the gas sensing characteristics are properly examined. A composite sensor has a higher sensing range (2–120 ppm), a quicker response, and recovery time, good long-term stability and repeatability towards the H
2
S gas. At room temperature, protonation/deprotonation at the PPy surface, efficient charge carrier interaction at the p-n heterojunction, and a large surface area available for gas adsorption together played a vital role in enhancing the gas sensing capabilities of the wt % ZTO-Ag@PPy composite sensors.</description><subject>Ammonia</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Current carriers</subject><subject>Electrical resistivity</subject><subject>Gas sensors</subject><subject>Gases</subject><subject>Heterojunctions</subject><subject>Hydrogen sulfide</subject><subject>Inorganic Chemistry</subject><subject>Molecular chains</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nitrogen dioxide</subject><subject>Organic Chemistry</subject><subject>P-n junctions</subject><subject>Polymer Sciences</subject><subject>Protonation</subject><subject>Recovery time</subject><subject>Room temperature</subject><subject>Silver</subject><subject>Surface area</subject><subject>Zinc stannate</subject><issn>1574-1443</issn><issn>1574-1451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOAjEQhhujiYi-gKcmnlc625ZdbiIRMCFCBC5emm63JUvY7douB96GZ-HJLK7Rm4fJzOH7_5n5EboH8giEJD0PZEBYRGIaqs9JlF6gDvCERcA4XP7OjF6jG--3hNCUcOggNZaq2Gk8lpkrlGwKW2Fr8Lu1JV7pstZONnun8bP0Oj8dp_EST6THS1156_DaF9XmdPxYzaPh5mmxOODpIfjk-E1WVtmytr5o9C26MnLn9d1P76L1-GU1mkaz-eR1NJxFisKgiWLIIc1y4Jnqx2k_ISoHKlW43IDknPKMKaLpQGW5oQmF3EDGjApwRsM_nHbRQ-tbO_u5174RW7t3VVgpzn4xZ5zGgYpbSjnrvdNG1K4opTsIIOIcpmjDFCFM8R2mSIOItiIf4Gqj3Z_1P6ovE4l30g</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Pagar, Sahebrao B.</creator><creator>Ghorude, Tatyarao N.</creator><creator>Deshpande, Mrinalini D.</creator><creator>SenthilKannan, K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230901</creationdate><title>Facile Fabrication of Room Temperature Based H2S Gas Sensor Using ZTO-Ag@PPy Hybrid Nanocomposite</title><author>Pagar, Sahebrao B. ; Ghorude, Tatyarao N. ; Deshpande, Mrinalini D. ; SenthilKannan, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-21d18bd15bc628670cd13ac157f1a5535b4c0e39cbdf3731df1b4fcc62b300353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ammonia</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Current carriers</topic><topic>Electrical resistivity</topic><topic>Gas sensors</topic><topic>Gases</topic><topic>Heterojunctions</topic><topic>Hydrogen sulfide</topic><topic>Inorganic Chemistry</topic><topic>Molecular chains</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nitrogen dioxide</topic><topic>Organic Chemistry</topic><topic>P-n junctions</topic><topic>Polymer Sciences</topic><topic>Protonation</topic><topic>Recovery time</topic><topic>Room temperature</topic><topic>Silver</topic><topic>Surface area</topic><topic>Zinc stannate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pagar, Sahebrao B.</creatorcontrib><creatorcontrib>Ghorude, Tatyarao N.</creatorcontrib><creatorcontrib>Deshpande, Mrinalini D.</creatorcontrib><creatorcontrib>SenthilKannan, K.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of inorganic and organometallic polymers and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pagar, Sahebrao B.</au><au>Ghorude, Tatyarao N.</au><au>Deshpande, Mrinalini D.</au><au>SenthilKannan, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile Fabrication of Room Temperature Based H2S Gas Sensor Using ZTO-Ag@PPy Hybrid Nanocomposite</atitle><jtitle>Journal of inorganic and organometallic polymers and materials</jtitle><stitle>J Inorg Organomet Polym</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>33</volume><issue>9</issue><spage>2752</spage><epage>2764</epage><pages>2752-2764</pages><issn>1574-1443</issn><eissn>1574-1451</eissn><abstract>In this study, Zinc stannate-silver (ZTO-Ag) nanoparticles are produced using the customary hydrothermal technique, followed by in-situ chemical oxidative polymerization, resulted in varied weight percentages (0, 5, 10, and 15 wt%) of ZTO-Ag@PPy nano-composites. The prepared composites are characterized for powder XRD, FTIR, FESEM and BET analysis. The I–V response of interdigitated electrode (IDE) composite films are studied at room temperature and the band gap for composites was determined using UV–visible. The 10% ZTO-Ag@PPy composite showed the highest dc electrical conductivity and the largest surface area among all the composites. Furthermore, the composites are exposed to H
2
S, NH
3
, CO, CO
2
, NO
2
, and Cl
2
gases. The 10% ZTO-Ag@PPy composite demonstrated the highest selective response for H
2
S gas because there is a significant interaction between the nanoparticles and the polymer chain which results in an effective incorporation of ZTO-Ag nanoparticles in the macromolecular chain. For 15% ZTO-Ag@PPy the agglomeration effect offers more resistance in the path of ions hence composite showed less sensitivity. After being exposed to H
2
S gas, the gas sensing characteristics are properly examined. A composite sensor has a higher sensing range (2–120 ppm), a quicker response, and recovery time, good long-term stability and repeatability towards the H
2
S gas. At room temperature, protonation/deprotonation at the PPy surface, efficient charge carrier interaction at the p-n heterojunction, and a large surface area available for gas adsorption together played a vital role in enhancing the gas sensing capabilities of the wt % ZTO-Ag@PPy composite sensors.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10904-023-02650-8</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-1443 |
ispartof | Journal of inorganic and organometallic polymers and materials, 2023-09, Vol.33 (9), p.2752-2764 |
issn | 1574-1443 1574-1451 |
language | eng |
recordid | cdi_proquest_journals_2867254532 |
source | Springer Nature - Complete Springer Journals |
subjects | Ammonia Chemistry Chemistry and Materials Science Current carriers Electrical resistivity Gas sensors Gases Heterojunctions Hydrogen sulfide Inorganic Chemistry Molecular chains Nanocomposites Nanoparticles Nitrogen dioxide Organic Chemistry P-n junctions Polymer Sciences Protonation Recovery time Room temperature Silver Surface area Zinc stannate |
title | Facile Fabrication of Room Temperature Based H2S Gas Sensor Using ZTO-Ag@PPy Hybrid Nanocomposite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A45%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20Fabrication%20of%20Room%20Temperature%20Based%C2%A0H2S%20Gas%20Sensor%20Using%C2%A0ZTO-Ag@PPy%20Hybrid%20Nanocomposite&rft.jtitle=Journal%20of%20inorganic%20and%20organometallic%20polymers%20and%20materials&rft.au=Pagar,%20Sahebrao%20B.&rft.date=2023-09-01&rft.volume=33&rft.issue=9&rft.spage=2752&rft.epage=2764&rft.pages=2752-2764&rft.issn=1574-1443&rft.eissn=1574-1451&rft_id=info:doi/10.1007/s10904-023-02650-8&rft_dat=%3Cproquest_cross%3E2867254532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2867254532&rft_id=info:pmid/&rfr_iscdi=true |