Spatial Control of Lithium Deposition by Controlling the Lithiophilicity with Copper(I) Oxide Boundaries

Spatial control of lithium deposition is the most important issue in lithium‐metal batteries because of the considerable control of lithium dendrite suppression via the uniform distribution of Li + flux. Although seed materials are crucial for the behavior of lithium deposition, in‐depth studies on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental materials (Hoboken, N.J.) N.J.), 2023-09, Vol.6 (5)
Hauptverfasser: Kim, Ju Ye, Chae, Oh B., Kim, Gukbo, Jung, Woo‐Bin, Choi, Sungho, Kim, Do Youb, Moon, San, Suk, Jungdon, Kang, Yongku, Wu, Mihye, Jung, Hee‐Tae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Energy & environmental materials (Hoboken, N.J.)
container_volume 6
creator Kim, Ju Ye
Chae, Oh B.
Kim, Gukbo
Jung, Woo‐Bin
Choi, Sungho
Kim, Do Youb
Moon, San
Suk, Jungdon
Kang, Yongku
Wu, Mihye
Jung, Hee‐Tae
description Spatial control of lithium deposition is the most important issue in lithium‐metal batteries because of the considerable control of lithium dendrite suppression via the uniform distribution of Li + flux. Although seed materials are crucial for the behavior of lithium deposition, in‐depth studies on their physical and chemical control have not been conducted. Here, we describe a new design of seed structure comprising a wrinkled Cu/graphene substrate surrounded by copper(I) oxide (Cu 2 O) on a graphene grain boundary over a large area, which is fabricated by the oxidation of the Cu surface via graphene boundary defects by using chemical vapor deposition (CVD). Scanning and transmission electron microscopy results reveal that Cu 2 O on the graphene boundary can render a preferential reaction with lithium during the first deposition and assist in the uniform deposition of lithium by preventing the agglomeration of lithium clusters during the second deposition. This two‐step process is attributed to the degree of selectivity due to the difference in lithium affinity, which allows long‐term electrochemical stability and a high rate capability via boundary effects. This study highlights the significance of the boundary effect, which can open new avenues for the formation of a large family of seed structures in lithium‐metal batteries.
doi_str_mv 10.1002/eem2.12392
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2867033261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2867033261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-ff2fe13bb86aa6c7ef49a9285780ba3f6953e5485c7033b8e0c7d994ced7639e3</originalsourceid><addsrcrecordid>eNpN0N9LwzAQB_AgCo65F_-CgC8qdOZHkzaPOn8NBntQn0vaXmxG19QkRfff2zkFn-4OPncHX4TOKZlTQtgNwJbNKeOKHaEJE5lICBfy-F9_imYhbMiICeUpVRPUvPQ6Wt3iheuidy12Bq9sbOywxffQu2CjdR0ud3-gtd07jg0clOsb29rKxh3-HOcR9T34y-UVXn_ZGvCdG7paewvhDJ0Y3QaY_dYpent8eF08J6v103Jxu0oqpkRMjGEGKC_LXGotqwxMqrRiuchyUmpupBIcRJqLKiOclzmQKquVSiuoM8kV8Cm6ONztvfsYIMRi4wbfjS8Llsv9EpN0VNcHVXkXggdT9N5utd8VlBT7MIt9mMVPmPwb3Lxn1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2867033261</pqid></control><display><type>article</type><title>Spatial Control of Lithium Deposition by Controlling the Lithiophilicity with Copper(I) Oxide Boundaries</title><source>Wiley Free Content</source><source>Wiley Online Library Open Access</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kim, Ju Ye ; Chae, Oh B. ; Kim, Gukbo ; Jung, Woo‐Bin ; Choi, Sungho ; Kim, Do Youb ; Moon, San ; Suk, Jungdon ; Kang, Yongku ; Wu, Mihye ; Jung, Hee‐Tae</creator><creatorcontrib>Kim, Ju Ye ; Chae, Oh B. ; Kim, Gukbo ; Jung, Woo‐Bin ; Choi, Sungho ; Kim, Do Youb ; Moon, San ; Suk, Jungdon ; Kang, Yongku ; Wu, Mihye ; Jung, Hee‐Tae</creatorcontrib><description>Spatial control of lithium deposition is the most important issue in lithium‐metal batteries because of the considerable control of lithium dendrite suppression via the uniform distribution of Li + flux. Although seed materials are crucial for the behavior of lithium deposition, in‐depth studies on their physical and chemical control have not been conducted. Here, we describe a new design of seed structure comprising a wrinkled Cu/graphene substrate surrounded by copper(I) oxide (Cu 2 O) on a graphene grain boundary over a large area, which is fabricated by the oxidation of the Cu surface via graphene boundary defects by using chemical vapor deposition (CVD). Scanning and transmission electron microscopy results reveal that Cu 2 O on the graphene boundary can render a preferential reaction with lithium during the first deposition and assist in the uniform deposition of lithium by preventing the agglomeration of lithium clusters during the second deposition. This two‐step process is attributed to the degree of selectivity due to the difference in lithium affinity, which allows long‐term electrochemical stability and a high rate capability via boundary effects. This study highlights the significance of the boundary effect, which can open new avenues for the formation of a large family of seed structures in lithium‐metal batteries.</description><identifier>ISSN: 2575-0356</identifier><identifier>EISSN: 2575-0356</identifier><identifier>DOI: 10.1002/eem2.12392</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Chemical control ; Chemical vapor deposition ; Copper ; Copper oxides ; Crystal defects ; Electrochemistry ; Grain boundaries ; Graphene ; Lithium ; Oxidation ; Substrates ; Transmission electron microscopy</subject><ispartof>Energy &amp; environmental materials (Hoboken, N.J.), 2023-09, Vol.6 (5)</ispartof><rights>2023 Zhengzhou University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-ff2fe13bb86aa6c7ef49a9285780ba3f6953e5485c7033b8e0c7d994ced7639e3</citedby><cites>FETCH-LOGICAL-c295t-ff2fe13bb86aa6c7ef49a9285780ba3f6953e5485c7033b8e0c7d994ced7639e3</cites><orcidid>0000-0003-4262-0569 ; 0000-0002-5727-6732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kim, Ju Ye</creatorcontrib><creatorcontrib>Chae, Oh B.</creatorcontrib><creatorcontrib>Kim, Gukbo</creatorcontrib><creatorcontrib>Jung, Woo‐Bin</creatorcontrib><creatorcontrib>Choi, Sungho</creatorcontrib><creatorcontrib>Kim, Do Youb</creatorcontrib><creatorcontrib>Moon, San</creatorcontrib><creatorcontrib>Suk, Jungdon</creatorcontrib><creatorcontrib>Kang, Yongku</creatorcontrib><creatorcontrib>Wu, Mihye</creatorcontrib><creatorcontrib>Jung, Hee‐Tae</creatorcontrib><title>Spatial Control of Lithium Deposition by Controlling the Lithiophilicity with Copper(I) Oxide Boundaries</title><title>Energy &amp; environmental materials (Hoboken, N.J.)</title><description>Spatial control of lithium deposition is the most important issue in lithium‐metal batteries because of the considerable control of lithium dendrite suppression via the uniform distribution of Li + flux. Although seed materials are crucial for the behavior of lithium deposition, in‐depth studies on their physical and chemical control have not been conducted. Here, we describe a new design of seed structure comprising a wrinkled Cu/graphene substrate surrounded by copper(I) oxide (Cu 2 O) on a graphene grain boundary over a large area, which is fabricated by the oxidation of the Cu surface via graphene boundary defects by using chemical vapor deposition (CVD). Scanning and transmission electron microscopy results reveal that Cu 2 O on the graphene boundary can render a preferential reaction with lithium during the first deposition and assist in the uniform deposition of lithium by preventing the agglomeration of lithium clusters during the second deposition. This two‐step process is attributed to the degree of selectivity due to the difference in lithium affinity, which allows long‐term electrochemical stability and a high rate capability via boundary effects. This study highlights the significance of the boundary effect, which can open new avenues for the formation of a large family of seed structures in lithium‐metal batteries.</description><subject>Chemical control</subject><subject>Chemical vapor deposition</subject><subject>Copper</subject><subject>Copper oxides</subject><subject>Crystal defects</subject><subject>Electrochemistry</subject><subject>Grain boundaries</subject><subject>Graphene</subject><subject>Lithium</subject><subject>Oxidation</subject><subject>Substrates</subject><subject>Transmission electron microscopy</subject><issn>2575-0356</issn><issn>2575-0356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpN0N9LwzAQB_AgCo65F_-CgC8qdOZHkzaPOn8NBntQn0vaXmxG19QkRfff2zkFn-4OPncHX4TOKZlTQtgNwJbNKeOKHaEJE5lICBfy-F9_imYhbMiICeUpVRPUvPQ6Wt3iheuidy12Bq9sbOywxffQu2CjdR0ud3-gtd07jg0clOsb29rKxh3-HOcR9T34y-UVXn_ZGvCdG7paewvhDJ0Y3QaY_dYpent8eF08J6v103Jxu0oqpkRMjGEGKC_LXGotqwxMqrRiuchyUmpupBIcRJqLKiOclzmQKquVSiuoM8kV8Cm6ONztvfsYIMRi4wbfjS8Llsv9EpN0VNcHVXkXggdT9N5utd8VlBT7MIt9mMVPmPwb3Lxn1g</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Kim, Ju Ye</creator><creator>Chae, Oh B.</creator><creator>Kim, Gukbo</creator><creator>Jung, Woo‐Bin</creator><creator>Choi, Sungho</creator><creator>Kim, Do Youb</creator><creator>Moon, San</creator><creator>Suk, Jungdon</creator><creator>Kang, Yongku</creator><creator>Wu, Mihye</creator><creator>Jung, Hee‐Tae</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4262-0569</orcidid><orcidid>https://orcid.org/0000-0002-5727-6732</orcidid></search><sort><creationdate>202309</creationdate><title>Spatial Control of Lithium Deposition by Controlling the Lithiophilicity with Copper(I) Oxide Boundaries</title><author>Kim, Ju Ye ; Chae, Oh B. ; Kim, Gukbo ; Jung, Woo‐Bin ; Choi, Sungho ; Kim, Do Youb ; Moon, San ; Suk, Jungdon ; Kang, Yongku ; Wu, Mihye ; Jung, Hee‐Tae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-ff2fe13bb86aa6c7ef49a9285780ba3f6953e5485c7033b8e0c7d994ced7639e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical control</topic><topic>Chemical vapor deposition</topic><topic>Copper</topic><topic>Copper oxides</topic><topic>Crystal defects</topic><topic>Electrochemistry</topic><topic>Grain boundaries</topic><topic>Graphene</topic><topic>Lithium</topic><topic>Oxidation</topic><topic>Substrates</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ju Ye</creatorcontrib><creatorcontrib>Chae, Oh B.</creatorcontrib><creatorcontrib>Kim, Gukbo</creatorcontrib><creatorcontrib>Jung, Woo‐Bin</creatorcontrib><creatorcontrib>Choi, Sungho</creatorcontrib><creatorcontrib>Kim, Do Youb</creatorcontrib><creatorcontrib>Moon, San</creatorcontrib><creatorcontrib>Suk, Jungdon</creatorcontrib><creatorcontrib>Kang, Yongku</creatorcontrib><creatorcontrib>Wu, Mihye</creatorcontrib><creatorcontrib>Jung, Hee‐Tae</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental materials (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ju Ye</au><au>Chae, Oh B.</au><au>Kim, Gukbo</au><au>Jung, Woo‐Bin</au><au>Choi, Sungho</au><au>Kim, Do Youb</au><au>Moon, San</au><au>Suk, Jungdon</au><au>Kang, Yongku</au><au>Wu, Mihye</au><au>Jung, Hee‐Tae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Control of Lithium Deposition by Controlling the Lithiophilicity with Copper(I) Oxide Boundaries</atitle><jtitle>Energy &amp; environmental materials (Hoboken, N.J.)</jtitle><date>2023-09</date><risdate>2023</risdate><volume>6</volume><issue>5</issue><issn>2575-0356</issn><eissn>2575-0356</eissn><abstract>Spatial control of lithium deposition is the most important issue in lithium‐metal batteries because of the considerable control of lithium dendrite suppression via the uniform distribution of Li + flux. Although seed materials are crucial for the behavior of lithium deposition, in‐depth studies on their physical and chemical control have not been conducted. Here, we describe a new design of seed structure comprising a wrinkled Cu/graphene substrate surrounded by copper(I) oxide (Cu 2 O) on a graphene grain boundary over a large area, which is fabricated by the oxidation of the Cu surface via graphene boundary defects by using chemical vapor deposition (CVD). Scanning and transmission electron microscopy results reveal that Cu 2 O on the graphene boundary can render a preferential reaction with lithium during the first deposition and assist in the uniform deposition of lithium by preventing the agglomeration of lithium clusters during the second deposition. This two‐step process is attributed to the degree of selectivity due to the difference in lithium affinity, which allows long‐term electrochemical stability and a high rate capability via boundary effects. This study highlights the significance of the boundary effect, which can open new avenues for the formation of a large family of seed structures in lithium‐metal batteries.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eem2.12392</doi><orcidid>https://orcid.org/0000-0003-4262-0569</orcidid><orcidid>https://orcid.org/0000-0002-5727-6732</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2575-0356
ispartof Energy & environmental materials (Hoboken, N.J.), 2023-09, Vol.6 (5)
issn 2575-0356
2575-0356
language eng
recordid cdi_proquest_journals_2867033261
source Wiley Free Content; Wiley Online Library Open Access; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Chemical control
Chemical vapor deposition
Copper
Copper oxides
Crystal defects
Electrochemistry
Grain boundaries
Graphene
Lithium
Oxidation
Substrates
Transmission electron microscopy
title Spatial Control of Lithium Deposition by Controlling the Lithiophilicity with Copper(I) Oxide Boundaries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Control%20of%20Lithium%20Deposition%20by%20Controlling%20the%20Lithiophilicity%20with%20Copper(I)%20Oxide%20Boundaries&rft.jtitle=Energy%20&%20environmental%20materials%20(Hoboken,%20N.J.)&rft.au=Kim,%20Ju%20Ye&rft.date=2023-09&rft.volume=6&rft.issue=5&rft.issn=2575-0356&rft.eissn=2575-0356&rft_id=info:doi/10.1002/eem2.12392&rft_dat=%3Cproquest_cross%3E2867033261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2867033261&rft_id=info:pmid/&rfr_iscdi=true