WFTNet: Exploiting Global and Local Periodicity in Long-term Time Series Forecasting

Recent CNN and Transformer-based models tried to utilize frequency and periodicity information for long-term time series forecasting. However, most existing work is based on Fourier transform, which cannot capture fine-grained and local frequency structure. In this paper, we propose a Wavelet-Fourie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-01
Hauptverfasser: Liu, Peiyuan, Wu, Beiliang, Li, Naiqi, Dai, Tao, Fengmao Lei, Bao, Jigang, Jiang, Yong, Shu-Tao, Xia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liu, Peiyuan
Wu, Beiliang
Li, Naiqi
Dai, Tao
Fengmao Lei
Bao, Jigang
Jiang, Yong
Shu-Tao, Xia
description Recent CNN and Transformer-based models tried to utilize frequency and periodicity information for long-term time series forecasting. However, most existing work is based on Fourier transform, which cannot capture fine-grained and local frequency structure. In this paper, we propose a Wavelet-Fourier Transform Network (WFTNet) for long-term time series forecasting. WFTNet utilizes both Fourier and wavelet transforms to extract comprehensive temporal-frequency information from the signal, where Fourier transform captures the global periodic patterns and wavelet transform captures the local ones. Furthermore, we introduce a Periodicity-Weighted Coefficient (PWC) to adaptively balance the importance of global and local frequency patterns. Extensive experiments on various time series datasets show that WFTNet consistently outperforms other state-of-the-art baseline. Code is available at https://github.com/Hank0626/WFTNet.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2866963949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866963949</sourcerecordid><originalsourceid>FETCH-proquest_journals_28669639493</originalsourceid><addsrcrecordid>eNqNjNEKgjAYhUcQJOU7DLoWbNOl3YbWRUTQoEtZ-ieTudk2od4-gx6gq_NxvsOZoYBQuomyhJAFCp3r4jgmbEvSlAaI30p-Br_DxWtQRnqpW3xQ5i4UFrrBJ1NPdAErTSNr6d9Y6qnUbeTB9pjLHvB1suBwaSzUwn0fVmj-EMpB-MslWpcF3x-jwZrnCM5XnRmtnlRFMsZyRvMkp_-tPvT6P7k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866963949</pqid></control><display><type>article</type><title>WFTNet: Exploiting Global and Local Periodicity in Long-term Time Series Forecasting</title><source>Free E- Journals</source><creator>Liu, Peiyuan ; Wu, Beiliang ; Li, Naiqi ; Dai, Tao ; Fengmao Lei ; Bao, Jigang ; Jiang, Yong ; Shu-Tao, Xia</creator><creatorcontrib>Liu, Peiyuan ; Wu, Beiliang ; Li, Naiqi ; Dai, Tao ; Fengmao Lei ; Bao, Jigang ; Jiang, Yong ; Shu-Tao, Xia</creatorcontrib><description>Recent CNN and Transformer-based models tried to utilize frequency and periodicity information for long-term time series forecasting. However, most existing work is based on Fourier transform, which cannot capture fine-grained and local frequency structure. In this paper, we propose a Wavelet-Fourier Transform Network (WFTNet) for long-term time series forecasting. WFTNet utilizes both Fourier and wavelet transforms to extract comprehensive temporal-frequency information from the signal, where Fourier transform captures the global periodic patterns and wavelet transform captures the local ones. Furthermore, we introduce a Periodicity-Weighted Coefficient (PWC) to adaptively balance the importance of global and local frequency patterns. Extensive experiments on various time series datasets show that WFTNet consistently outperforms other state-of-the-art baseline. Code is available at https://github.com/Hank0626/WFTNet.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Forecasting ; Fourier transforms ; Time series ; Wavelet transforms</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Liu, Peiyuan</creatorcontrib><creatorcontrib>Wu, Beiliang</creatorcontrib><creatorcontrib>Li, Naiqi</creatorcontrib><creatorcontrib>Dai, Tao</creatorcontrib><creatorcontrib>Fengmao Lei</creatorcontrib><creatorcontrib>Bao, Jigang</creatorcontrib><creatorcontrib>Jiang, Yong</creatorcontrib><creatorcontrib>Shu-Tao, Xia</creatorcontrib><title>WFTNet: Exploiting Global and Local Periodicity in Long-term Time Series Forecasting</title><title>arXiv.org</title><description>Recent CNN and Transformer-based models tried to utilize frequency and periodicity information for long-term time series forecasting. However, most existing work is based on Fourier transform, which cannot capture fine-grained and local frequency structure. In this paper, we propose a Wavelet-Fourier Transform Network (WFTNet) for long-term time series forecasting. WFTNet utilizes both Fourier and wavelet transforms to extract comprehensive temporal-frequency information from the signal, where Fourier transform captures the global periodic patterns and wavelet transform captures the local ones. Furthermore, we introduce a Periodicity-Weighted Coefficient (PWC) to adaptively balance the importance of global and local frequency patterns. Extensive experiments on various time series datasets show that WFTNet consistently outperforms other state-of-the-art baseline. Code is available at https://github.com/Hank0626/WFTNet.</description><subject>Forecasting</subject><subject>Fourier transforms</subject><subject>Time series</subject><subject>Wavelet transforms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjNEKgjAYhUcQJOU7DLoWbNOl3YbWRUTQoEtZ-ieTudk2od4-gx6gq_NxvsOZoYBQuomyhJAFCp3r4jgmbEvSlAaI30p-Br_DxWtQRnqpW3xQ5i4UFrrBJ1NPdAErTSNr6d9Y6qnUbeTB9pjLHvB1suBwaSzUwn0fVmj-EMpB-MslWpcF3x-jwZrnCM5XnRmtnlRFMsZyRvMkp_-tPvT6P7k</recordid><startdate>20240104</startdate><enddate>20240104</enddate><creator>Liu, Peiyuan</creator><creator>Wu, Beiliang</creator><creator>Li, Naiqi</creator><creator>Dai, Tao</creator><creator>Fengmao Lei</creator><creator>Bao, Jigang</creator><creator>Jiang, Yong</creator><creator>Shu-Tao, Xia</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240104</creationdate><title>WFTNet: Exploiting Global and Local Periodicity in Long-term Time Series Forecasting</title><author>Liu, Peiyuan ; Wu, Beiliang ; Li, Naiqi ; Dai, Tao ; Fengmao Lei ; Bao, Jigang ; Jiang, Yong ; Shu-Tao, Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28669639493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Forecasting</topic><topic>Fourier transforms</topic><topic>Time series</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Peiyuan</creatorcontrib><creatorcontrib>Wu, Beiliang</creatorcontrib><creatorcontrib>Li, Naiqi</creatorcontrib><creatorcontrib>Dai, Tao</creatorcontrib><creatorcontrib>Fengmao Lei</creatorcontrib><creatorcontrib>Bao, Jigang</creatorcontrib><creatorcontrib>Jiang, Yong</creatorcontrib><creatorcontrib>Shu-Tao, Xia</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Peiyuan</au><au>Wu, Beiliang</au><au>Li, Naiqi</au><au>Dai, Tao</au><au>Fengmao Lei</au><au>Bao, Jigang</au><au>Jiang, Yong</au><au>Shu-Tao, Xia</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>WFTNet: Exploiting Global and Local Periodicity in Long-term Time Series Forecasting</atitle><jtitle>arXiv.org</jtitle><date>2024-01-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Recent CNN and Transformer-based models tried to utilize frequency and periodicity information for long-term time series forecasting. However, most existing work is based on Fourier transform, which cannot capture fine-grained and local frequency structure. In this paper, we propose a Wavelet-Fourier Transform Network (WFTNet) for long-term time series forecasting. WFTNet utilizes both Fourier and wavelet transforms to extract comprehensive temporal-frequency information from the signal, where Fourier transform captures the global periodic patterns and wavelet transform captures the local ones. Furthermore, we introduce a Periodicity-Weighted Coefficient (PWC) to adaptively balance the importance of global and local frequency patterns. Extensive experiments on various time series datasets show that WFTNet consistently outperforms other state-of-the-art baseline. Code is available at https://github.com/Hank0626/WFTNet.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2866963949
source Free E- Journals
subjects Forecasting
Fourier transforms
Time series
Wavelet transforms
title WFTNet: Exploiting Global and Local Periodicity in Long-term Time Series Forecasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=WFTNet:%20Exploiting%20Global%20and%20Local%20Periodicity%20in%20Long-term%20Time%20Series%20Forecasting&rft.jtitle=arXiv.org&rft.au=Liu,%20Peiyuan&rft.date=2024-01-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2866963949%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866963949&rft_id=info:pmid/&rfr_iscdi=true