Flight data outlier detection by constrained LSTM-autoencoder

Detecting outliers of flight data is an important research field for flight safety. Deep learning methods have achieved remarkable performance in the outlier detection tasks for time series data. The majority of previous deep-learning-based outlier detection methods for flight data focus on either l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless networks 2023-10, Vol.29 (7), p.3051-3061
Hauptverfasser: Gao, Long, Xu, Congan, Wang, Fengqin, Wu, Junfeng, Su, Hang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3061
container_issue 7
container_start_page 3051
container_title Wireless networks
container_volume 29
creator Gao, Long
Xu, Congan
Wang, Fengqin
Wu, Junfeng
Su, Hang
description Detecting outliers of flight data is an important research field for flight safety. Deep learning methods have achieved remarkable performance in the outlier detection tasks for time series data. The majority of previous deep-learning-based outlier detection methods for flight data focus on either learning descriptive features by matching the distribution of inliers with autoencoder-based models, or learning semantic features by mapping inliers into a hyper-sphere with kernel functions, while the information of the given class samples is insufficiently utilized. To address this issue, in this paper, we propose a novel multi-task-based model that can jointly learn descriptive and semantic features. The proposed model is based on an LSTM autoencoder to reconstruct the inputs, and we design a constraining layer to pull the learned semantic features together. By jointly training two branches of the model, the proposed method can learn to fit the distribution of inputs as well as map inliers into a tight hyper-sphere, thus making outliers and inliers more distinguishable. Experimental results on the real flight dataset demonstrate the effectiveness of the proposed method compared to previous algorithms.
doi_str_mv 10.1007/s11276-023-03353-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2866961911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866961911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9b1fca7001f62519d5f7a88330cd68ff21d5e6f0d164d4adcf7a18bf87285e3e3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hM0s0mBw9SrAoVD9ZzSPNRt9SNJtlD_71bV_DmaQbmed-Bh5BLhGsEaG4yImsEBcYpcF5zikdkgnXDqEQljocdGKMAXJ6Ss5y3ACC5UhNyu9i1m_dSOVNMFfuya32qnC_eljZ21Xpf2djlkkzbeVctX1fP1PQl-s5G59M5OQlml_3F75ySt8X9av5Ily8PT_O7JbUcVaFqjcGaBgCDYDUqV4fGSMk5WCdkCAxd7UUAh2LmZsbZ4YxyHWTDZO2551NyNfZ-pvjV-1z0NvapG15qJoVQAhXiQLGRsinmnHzQn6n9MGmvEfRBkx416UGT_tGkDyE-hvIAdxuf_qr_SX0De0lqLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866961911</pqid></control><display><type>article</type><title>Flight data outlier detection by constrained LSTM-autoencoder</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gao, Long ; Xu, Congan ; Wang, Fengqin ; Wu, Junfeng ; Su, Hang</creator><creatorcontrib>Gao, Long ; Xu, Congan ; Wang, Fengqin ; Wu, Junfeng ; Su, Hang</creatorcontrib><description>Detecting outliers of flight data is an important research field for flight safety. Deep learning methods have achieved remarkable performance in the outlier detection tasks for time series data. The majority of previous deep-learning-based outlier detection methods for flight data focus on either learning descriptive features by matching the distribution of inliers with autoencoder-based models, or learning semantic features by mapping inliers into a hyper-sphere with kernel functions, while the information of the given class samples is insufficiently utilized. To address this issue, in this paper, we propose a novel multi-task-based model that can jointly learn descriptive and semantic features. The proposed model is based on an LSTM autoencoder to reconstruct the inputs, and we design a constraining layer to pull the learned semantic features together. By jointly training two branches of the model, the proposed method can learn to fit the distribution of inputs as well as map inliers into a tight hyper-sphere, thus making outliers and inliers more distinguishable. Experimental results on the real flight dataset demonstrate the effectiveness of the proposed method compared to previous algorithms.</description><identifier>ISSN: 1022-0038</identifier><identifier>EISSN: 1572-8196</identifier><identifier>DOI: 10.1007/s11276-023-03353-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Communications Engineering ; Computer Communication Networks ; Data analysis ; Deep learning ; Electrical Engineering ; Engineering ; Flight safety ; IT in Business ; Kernel functions ; Machine learning ; Networks ; Outliers (statistics) ; Semantics ; Wireless networks</subject><ispartof>Wireless networks, 2023-10, Vol.29 (7), p.3051-3061</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9b1fca7001f62519d5f7a88330cd68ff21d5e6f0d164d4adcf7a18bf87285e3e3</citedby><cites>FETCH-LOGICAL-c319t-9b1fca7001f62519d5f7a88330cd68ff21d5e6f0d164d4adcf7a18bf87285e3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11276-023-03353-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11276-023-03353-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gao, Long</creatorcontrib><creatorcontrib>Xu, Congan</creatorcontrib><creatorcontrib>Wang, Fengqin</creatorcontrib><creatorcontrib>Wu, Junfeng</creatorcontrib><creatorcontrib>Su, Hang</creatorcontrib><title>Flight data outlier detection by constrained LSTM-autoencoder</title><title>Wireless networks</title><addtitle>Wireless Netw</addtitle><description>Detecting outliers of flight data is an important research field for flight safety. Deep learning methods have achieved remarkable performance in the outlier detection tasks for time series data. The majority of previous deep-learning-based outlier detection methods for flight data focus on either learning descriptive features by matching the distribution of inliers with autoencoder-based models, or learning semantic features by mapping inliers into a hyper-sphere with kernel functions, while the information of the given class samples is insufficiently utilized. To address this issue, in this paper, we propose a novel multi-task-based model that can jointly learn descriptive and semantic features. The proposed model is based on an LSTM autoencoder to reconstruct the inputs, and we design a constraining layer to pull the learned semantic features together. By jointly training two branches of the model, the proposed method can learn to fit the distribution of inputs as well as map inliers into a tight hyper-sphere, thus making outliers and inliers more distinguishable. Experimental results on the real flight dataset demonstrate the effectiveness of the proposed method compared to previous algorithms.</description><subject>Algorithms</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Data analysis</subject><subject>Deep learning</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Flight safety</subject><subject>IT in Business</subject><subject>Kernel functions</subject><subject>Machine learning</subject><subject>Networks</subject><subject>Outliers (statistics)</subject><subject>Semantics</subject><subject>Wireless networks</subject><issn>1022-0038</issn><issn>1572-8196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-hM0s0mBw9SrAoVD9ZzSPNRt9SNJtlD_71bV_DmaQbmed-Bh5BLhGsEaG4yImsEBcYpcF5zikdkgnXDqEQljocdGKMAXJ6Ss5y3ACC5UhNyu9i1m_dSOVNMFfuya32qnC_eljZ21Xpf2djlkkzbeVctX1fP1PQl-s5G59M5OQlml_3F75ySt8X9av5Ily8PT_O7JbUcVaFqjcGaBgCDYDUqV4fGSMk5WCdkCAxd7UUAh2LmZsbZ4YxyHWTDZO2551NyNfZ-pvjV-1z0NvapG15qJoVQAhXiQLGRsinmnHzQn6n9MGmvEfRBkx416UGT_tGkDyE-hvIAdxuf_qr_SX0De0lqLQ</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Gao, Long</creator><creator>Xu, Congan</creator><creator>Wang, Fengqin</creator><creator>Wu, Junfeng</creator><creator>Su, Hang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20231001</creationdate><title>Flight data outlier detection by constrained LSTM-autoencoder</title><author>Gao, Long ; Xu, Congan ; Wang, Fengqin ; Wu, Junfeng ; Su, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9b1fca7001f62519d5f7a88330cd68ff21d5e6f0d164d4adcf7a18bf87285e3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Data analysis</topic><topic>Deep learning</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Flight safety</topic><topic>IT in Business</topic><topic>Kernel functions</topic><topic>Machine learning</topic><topic>Networks</topic><topic>Outliers (statistics)</topic><topic>Semantics</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Long</creatorcontrib><creatorcontrib>Xu, Congan</creatorcontrib><creatorcontrib>Wang, Fengqin</creatorcontrib><creatorcontrib>Wu, Junfeng</creatorcontrib><creatorcontrib>Su, Hang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Long</au><au>Xu, Congan</au><au>Wang, Fengqin</au><au>Wu, Junfeng</au><au>Su, Hang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flight data outlier detection by constrained LSTM-autoencoder</atitle><jtitle>Wireless networks</jtitle><stitle>Wireless Netw</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>29</volume><issue>7</issue><spage>3051</spage><epage>3061</epage><pages>3051-3061</pages><issn>1022-0038</issn><eissn>1572-8196</eissn><abstract>Detecting outliers of flight data is an important research field for flight safety. Deep learning methods have achieved remarkable performance in the outlier detection tasks for time series data. The majority of previous deep-learning-based outlier detection methods for flight data focus on either learning descriptive features by matching the distribution of inliers with autoencoder-based models, or learning semantic features by mapping inliers into a hyper-sphere with kernel functions, while the information of the given class samples is insufficiently utilized. To address this issue, in this paper, we propose a novel multi-task-based model that can jointly learn descriptive and semantic features. The proposed model is based on an LSTM autoencoder to reconstruct the inputs, and we design a constraining layer to pull the learned semantic features together. By jointly training two branches of the model, the proposed method can learn to fit the distribution of inputs as well as map inliers into a tight hyper-sphere, thus making outliers and inliers more distinguishable. Experimental results on the real flight dataset demonstrate the effectiveness of the proposed method compared to previous algorithms.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11276-023-03353-1</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1022-0038
ispartof Wireless networks, 2023-10, Vol.29 (7), p.3051-3061
issn 1022-0038
1572-8196
language eng
recordid cdi_proquest_journals_2866961911
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Communications Engineering
Computer Communication Networks
Data analysis
Deep learning
Electrical Engineering
Engineering
Flight safety
IT in Business
Kernel functions
Machine learning
Networks
Outliers (statistics)
Semantics
Wireless networks
title Flight data outlier detection by constrained LSTM-autoencoder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flight%20data%20outlier%20detection%20by%20constrained%20LSTM-autoencoder&rft.jtitle=Wireless%20networks&rft.au=Gao,%20Long&rft.date=2023-10-01&rft.volume=29&rft.issue=7&rft.spage=3051&rft.epage=3061&rft.pages=3051-3061&rft.issn=1022-0038&rft.eissn=1572-8196&rft_id=info:doi/10.1007/s11276-023-03353-1&rft_dat=%3Cproquest_cross%3E2866961911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866961911&rft_id=info:pmid/&rfr_iscdi=true