High‐Temperature Air Synthesis: A Facile Approach to Nitrogen‐Doped, Metal‐Free Carbon Electrocatalysts

This study presents a novel, straightforward method for synthesizing hierarchical nitrogen‐doped carbon structures, positioning metal‐free, carbon‐based materials as potential substitutes in electrochemical reactions such as oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2023-09, Vol.15 (18), p.n/a
Hauptverfasser: Etesami, Mohammad, Khezri, Ramin, Rezaei Motlagh, Shiva, Gopalakrishnan, Mohan, Thanh Nguyen, Mai, Yonezawa, Tetsu, Wannapaiboon, Suttipong, Nootong, Kasidit, Somwangthanaroj, Anongnat, Kheawhom, Soorathep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page
container_title ChemCatChem
container_volume 15
creator Etesami, Mohammad
Khezri, Ramin
Rezaei Motlagh, Shiva
Gopalakrishnan, Mohan
Thanh Nguyen, Mai
Yonezawa, Tetsu
Wannapaiboon, Suttipong
Nootong, Kasidit
Somwangthanaroj, Anongnat
Kheawhom, Soorathep
description This study presents a novel, straightforward method for synthesizing hierarchical nitrogen‐doped carbon structures, positioning metal‐free, carbon‐based materials as potential substitutes in electrochemical reactions such as oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). The unique method involves a single‐step pyrolysis process in an air atmosphere, eliminating the need for an inert atmosphere and pre‐treatment procedures. It enables simultaneous self‐templating and heteroatom doping, resulting in oxygen‐rich functional groups embedded in the nitrogen‐doped carbon structure. We also crafted a carbon structure without heteroatom doping, comparing its electrochemical performance in ORR and HER. Our findings indicate that carbon catalysts pyrolyzed at higher temperatures have more pyridinic N, functional groups, and active sites‐ factors conducive to electrochemical reactions. We tested the air‐synthesized electrocatalysts for ORR in alkaline electrolyte and employed the optimized nitrogen‐doped carbon catalyst, pyrolyzed at 700 °C in an air atmosphere, as cathode material in a zinc‐air battery. This catalyst demonstrated ORR performance comparable to the commercial Pt/C catalyst and showed minimal overpotential in acidic HER. Our research establishes a pioneering technique for synthesizing porous, metal‐free, nitrogen‐doped carbon materials, paving the way for potential energy applications. The study introduces air synthesis as an innovative, flexible method for preparing carbon‐based electrocatalysts, eliminating the need for an inert atmosphere and allowing heteroatom incorporation depending on the precursor type.
doi_str_mv 10.1002/cctc.202300724
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2866947001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866947001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2724-52c42c78ece19ce48ffb4dba823a88aa2c841d27d86033f1f0799726c0ef9f303</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EEqWwMltipcWXNLbZqtBSJC4DZbZc56RNlSbBdoWy8Qg8I0-Cq6IyMp3b_51z9CN0ScmQEsJurA12yAjjhAiWHKEelakYcKnU8SGX5BSdeb8mJFVcjHpoMyuXq-_PrzlsWnAmbB3gcenwa1eHFfjS3-IxnhpbVrHftq4xdoVDg5_L4Jol1BG9a1rIr_ETBFPFcuoAcGbcoqnxpAIbddbEUeeDP0cnhak8XPzGPnqbTubZbPD4cv-QjR8HlsXXByNmE2aFBAtUWUhkUSySfGEk40ZKY5iVCc2ZyGVKOC9oQYRSgqWWQKEKTngfXe33xofft-CDXjdbV8eTmsk0VYkghEbVcK-yrvHeQaFbV26M6zQlemep3lmqD5ZGQO2Bj2hH949aZ9k8-2N_ADE9fes</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866947001</pqid></control><display><type>article</type><title>High‐Temperature Air Synthesis: A Facile Approach to Nitrogen‐Doped, Metal‐Free Carbon Electrocatalysts</title><source>Wiley Online Library Journals</source><creator>Etesami, Mohammad ; Khezri, Ramin ; Rezaei Motlagh, Shiva ; Gopalakrishnan, Mohan ; Thanh Nguyen, Mai ; Yonezawa, Tetsu ; Wannapaiboon, Suttipong ; Nootong, Kasidit ; Somwangthanaroj, Anongnat ; Kheawhom, Soorathep</creator><creatorcontrib>Etesami, Mohammad ; Khezri, Ramin ; Rezaei Motlagh, Shiva ; Gopalakrishnan, Mohan ; Thanh Nguyen, Mai ; Yonezawa, Tetsu ; Wannapaiboon, Suttipong ; Nootong, Kasidit ; Somwangthanaroj, Anongnat ; Kheawhom, Soorathep</creatorcontrib><description>This study presents a novel, straightforward method for synthesizing hierarchical nitrogen‐doped carbon structures, positioning metal‐free, carbon‐based materials as potential substitutes in electrochemical reactions such as oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). The unique method involves a single‐step pyrolysis process in an air atmosphere, eliminating the need for an inert atmosphere and pre‐treatment procedures. It enables simultaneous self‐templating and heteroatom doping, resulting in oxygen‐rich functional groups embedded in the nitrogen‐doped carbon structure. We also crafted a carbon structure without heteroatom doping, comparing its electrochemical performance in ORR and HER. Our findings indicate that carbon catalysts pyrolyzed at higher temperatures have more pyridinic N, functional groups, and active sites‐ factors conducive to electrochemical reactions. We tested the air‐synthesized electrocatalysts for ORR in alkaline electrolyte and employed the optimized nitrogen‐doped carbon catalyst, pyrolyzed at 700 °C in an air atmosphere, as cathode material in a zinc‐air battery. This catalyst demonstrated ORR performance comparable to the commercial Pt/C catalyst and showed minimal overpotential in acidic HER. Our research establishes a pioneering technique for synthesizing porous, metal‐free, nitrogen‐doped carbon materials, paving the way for potential energy applications. The study introduces air synthesis as an innovative, flexible method for preparing carbon‐based electrocatalysts, eliminating the need for an inert atmosphere and allowing heteroatom incorporation depending on the precursor type.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.202300724</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>alkaline electrolyte ; ambient air ; Carbon ; carbonaceous ; Catalysts ; Chemical reduction ; Doping ; Electrocatalysts ; Electrochemical analysis ; Electrode materials ; Functional groups ; Hydrogen evolution reactions ; Inert atmospheres ; Metal air batteries ; metal-free ; Nitrogen ; Oxygen reduction reactions ; Potential energy ; Pyrolysis ; zinc-air battery ; Zinc-oxygen batteries</subject><ispartof>ChemCatChem, 2023-09, Vol.15 (18), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2724-52c42c78ece19ce48ffb4dba823a88aa2c841d27d86033f1f0799726c0ef9f303</cites><orcidid>0000-0002-3129-2750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.202300724$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.202300724$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Etesami, Mohammad</creatorcontrib><creatorcontrib>Khezri, Ramin</creatorcontrib><creatorcontrib>Rezaei Motlagh, Shiva</creatorcontrib><creatorcontrib>Gopalakrishnan, Mohan</creatorcontrib><creatorcontrib>Thanh Nguyen, Mai</creatorcontrib><creatorcontrib>Yonezawa, Tetsu</creatorcontrib><creatorcontrib>Wannapaiboon, Suttipong</creatorcontrib><creatorcontrib>Nootong, Kasidit</creatorcontrib><creatorcontrib>Somwangthanaroj, Anongnat</creatorcontrib><creatorcontrib>Kheawhom, Soorathep</creatorcontrib><title>High‐Temperature Air Synthesis: A Facile Approach to Nitrogen‐Doped, Metal‐Free Carbon Electrocatalysts</title><title>ChemCatChem</title><description>This study presents a novel, straightforward method for synthesizing hierarchical nitrogen‐doped carbon structures, positioning metal‐free, carbon‐based materials as potential substitutes in electrochemical reactions such as oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). The unique method involves a single‐step pyrolysis process in an air atmosphere, eliminating the need for an inert atmosphere and pre‐treatment procedures. It enables simultaneous self‐templating and heteroatom doping, resulting in oxygen‐rich functional groups embedded in the nitrogen‐doped carbon structure. We also crafted a carbon structure without heteroatom doping, comparing its electrochemical performance in ORR and HER. Our findings indicate that carbon catalysts pyrolyzed at higher temperatures have more pyridinic N, functional groups, and active sites‐ factors conducive to electrochemical reactions. We tested the air‐synthesized electrocatalysts for ORR in alkaline electrolyte and employed the optimized nitrogen‐doped carbon catalyst, pyrolyzed at 700 °C in an air atmosphere, as cathode material in a zinc‐air battery. This catalyst demonstrated ORR performance comparable to the commercial Pt/C catalyst and showed minimal overpotential in acidic HER. Our research establishes a pioneering technique for synthesizing porous, metal‐free, nitrogen‐doped carbon materials, paving the way for potential energy applications. The study introduces air synthesis as an innovative, flexible method for preparing carbon‐based electrocatalysts, eliminating the need for an inert atmosphere and allowing heteroatom incorporation depending on the precursor type.</description><subject>alkaline electrolyte</subject><subject>ambient air</subject><subject>Carbon</subject><subject>carbonaceous</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Doping</subject><subject>Electrocatalysts</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Functional groups</subject><subject>Hydrogen evolution reactions</subject><subject>Inert atmospheres</subject><subject>Metal air batteries</subject><subject>metal-free</subject><subject>Nitrogen</subject><subject>Oxygen reduction reactions</subject><subject>Potential energy</subject><subject>Pyrolysis</subject><subject>zinc-air battery</subject><subject>Zinc-oxygen batteries</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EEqWwMltipcWXNLbZqtBSJC4DZbZc56RNlSbBdoWy8Qg8I0-Cq6IyMp3b_51z9CN0ScmQEsJurA12yAjjhAiWHKEelakYcKnU8SGX5BSdeb8mJFVcjHpoMyuXq-_PrzlsWnAmbB3gcenwa1eHFfjS3-IxnhpbVrHftq4xdoVDg5_L4Jol1BG9a1rIr_ETBFPFcuoAcGbcoqnxpAIbddbEUeeDP0cnhak8XPzGPnqbTubZbPD4cv-QjR8HlsXXByNmE2aFBAtUWUhkUSySfGEk40ZKY5iVCc2ZyGVKOC9oQYRSgqWWQKEKTngfXe33xofft-CDXjdbV8eTmsk0VYkghEbVcK-yrvHeQaFbV26M6zQlemep3lmqD5ZGQO2Bj2hH949aZ9k8-2N_ADE9fes</recordid><startdate>20230922</startdate><enddate>20230922</enddate><creator>Etesami, Mohammad</creator><creator>Khezri, Ramin</creator><creator>Rezaei Motlagh, Shiva</creator><creator>Gopalakrishnan, Mohan</creator><creator>Thanh Nguyen, Mai</creator><creator>Yonezawa, Tetsu</creator><creator>Wannapaiboon, Suttipong</creator><creator>Nootong, Kasidit</creator><creator>Somwangthanaroj, Anongnat</creator><creator>Kheawhom, Soorathep</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3129-2750</orcidid></search><sort><creationdate>20230922</creationdate><title>High‐Temperature Air Synthesis: A Facile Approach to Nitrogen‐Doped, Metal‐Free Carbon Electrocatalysts</title><author>Etesami, Mohammad ; Khezri, Ramin ; Rezaei Motlagh, Shiva ; Gopalakrishnan, Mohan ; Thanh Nguyen, Mai ; Yonezawa, Tetsu ; Wannapaiboon, Suttipong ; Nootong, Kasidit ; Somwangthanaroj, Anongnat ; Kheawhom, Soorathep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2724-52c42c78ece19ce48ffb4dba823a88aa2c841d27d86033f1f0799726c0ef9f303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>alkaline electrolyte</topic><topic>ambient air</topic><topic>Carbon</topic><topic>carbonaceous</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Doping</topic><topic>Electrocatalysts</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Functional groups</topic><topic>Hydrogen evolution reactions</topic><topic>Inert atmospheres</topic><topic>Metal air batteries</topic><topic>metal-free</topic><topic>Nitrogen</topic><topic>Oxygen reduction reactions</topic><topic>Potential energy</topic><topic>Pyrolysis</topic><topic>zinc-air battery</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Etesami, Mohammad</creatorcontrib><creatorcontrib>Khezri, Ramin</creatorcontrib><creatorcontrib>Rezaei Motlagh, Shiva</creatorcontrib><creatorcontrib>Gopalakrishnan, Mohan</creatorcontrib><creatorcontrib>Thanh Nguyen, Mai</creatorcontrib><creatorcontrib>Yonezawa, Tetsu</creatorcontrib><creatorcontrib>Wannapaiboon, Suttipong</creatorcontrib><creatorcontrib>Nootong, Kasidit</creatorcontrib><creatorcontrib>Somwangthanaroj, Anongnat</creatorcontrib><creatorcontrib>Kheawhom, Soorathep</creatorcontrib><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Etesami, Mohammad</au><au>Khezri, Ramin</au><au>Rezaei Motlagh, Shiva</au><au>Gopalakrishnan, Mohan</au><au>Thanh Nguyen, Mai</au><au>Yonezawa, Tetsu</au><au>Wannapaiboon, Suttipong</au><au>Nootong, Kasidit</au><au>Somwangthanaroj, Anongnat</au><au>Kheawhom, Soorathep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐Temperature Air Synthesis: A Facile Approach to Nitrogen‐Doped, Metal‐Free Carbon Electrocatalysts</atitle><jtitle>ChemCatChem</jtitle><date>2023-09-22</date><risdate>2023</risdate><volume>15</volume><issue>18</issue><epage>n/a</epage><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>This study presents a novel, straightforward method for synthesizing hierarchical nitrogen‐doped carbon structures, positioning metal‐free, carbon‐based materials as potential substitutes in electrochemical reactions such as oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). The unique method involves a single‐step pyrolysis process in an air atmosphere, eliminating the need for an inert atmosphere and pre‐treatment procedures. It enables simultaneous self‐templating and heteroatom doping, resulting in oxygen‐rich functional groups embedded in the nitrogen‐doped carbon structure. We also crafted a carbon structure without heteroatom doping, comparing its electrochemical performance in ORR and HER. Our findings indicate that carbon catalysts pyrolyzed at higher temperatures have more pyridinic N, functional groups, and active sites‐ factors conducive to electrochemical reactions. We tested the air‐synthesized electrocatalysts for ORR in alkaline electrolyte and employed the optimized nitrogen‐doped carbon catalyst, pyrolyzed at 700 °C in an air atmosphere, as cathode material in a zinc‐air battery. This catalyst demonstrated ORR performance comparable to the commercial Pt/C catalyst and showed minimal overpotential in acidic HER. Our research establishes a pioneering technique for synthesizing porous, metal‐free, nitrogen‐doped carbon materials, paving the way for potential energy applications. The study introduces air synthesis as an innovative, flexible method for preparing carbon‐based electrocatalysts, eliminating the need for an inert atmosphere and allowing heteroatom incorporation depending on the precursor type.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.202300724</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3129-2750</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2023-09, Vol.15 (18), p.n/a
issn 1867-3880
1867-3899
language eng
recordid cdi_proquest_journals_2866947001
source Wiley Online Library Journals
subjects alkaline electrolyte
ambient air
Carbon
carbonaceous
Catalysts
Chemical reduction
Doping
Electrocatalysts
Electrochemical analysis
Electrode materials
Functional groups
Hydrogen evolution reactions
Inert atmospheres
Metal air batteries
metal-free
Nitrogen
Oxygen reduction reactions
Potential energy
Pyrolysis
zinc-air battery
Zinc-oxygen batteries
title High‐Temperature Air Synthesis: A Facile Approach to Nitrogen‐Doped, Metal‐Free Carbon Electrocatalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90Temperature%20Air%20Synthesis:%20A%20Facile%20Approach%20to%20Nitrogen%E2%80%90Doped,%20Metal%E2%80%90Free%20Carbon%20Electrocatalysts&rft.jtitle=ChemCatChem&rft.au=Etesami,%20Mohammad&rft.date=2023-09-22&rft.volume=15&rft.issue=18&rft.epage=n/a&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.202300724&rft_dat=%3Cproquest_cross%3E2866947001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866947001&rft_id=info:pmid/&rfr_iscdi=true