SMART-LLM: Smart Multi-Agent Robot Task Planning using Large Language Models
In this work, we introduce SMART-LLM, an innovative framework designed for embodied multi-robot task planning. SMART-LLM: Smart Multi-Agent Robot Task Planning using Large Language Models (LLMs), harnesses the power of LLMs to convert high-level task instructions provided as input into a multi-robot...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Shyam Sundar Kannan Venkatesh, Vishnunandan L N Byung-Cheol Min |
description | In this work, we introduce SMART-LLM, an innovative framework designed for embodied multi-robot task planning. SMART-LLM: Smart Multi-Agent Robot Task Planning using Large Language Models (LLMs), harnesses the power of LLMs to convert high-level task instructions provided as input into a multi-robot task plan. It accomplishes this by executing a series of stages, including task decomposition, coalition formation, and task allocation, all guided by programmatic LLM prompts within the few-shot prompting paradigm. We create a benchmark dataset designed for validating the multi-robot task planning problem, encompassing four distinct categories of high-level instructions that vary in task complexity. Our evaluation experiments span both simulation and real-world scenarios, demonstrating that the proposed model can achieve promising results for generating multi-robot task plans. The experimental videos, code, and datasets from the work can be found at https://sites.google.com/view/smart-llm/. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2866528466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866528466</sourcerecordid><originalsourceid>FETCH-proquest_journals_28665284663</originalsourceid><addsrcrecordid>eNqNik0KwjAYBYMgWLR3CLgO1C9tLO6KKC4SkNp9iRhDa0w0P_e3ggdwM2_gzQxlQOmG1CXAAuUhjEVRANtCVdEM8Yto2o5wLnb48pQ-YpFMHEijlY24dVcXcSfDA5-NtHawGqfwJZdeq4lWJzmJcDdlwgrN79IElf92idbHQ7c_kZd376RC7EeXvJ2uHmrGKqhLxuh_1QdC-DvF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866528466</pqid></control><display><type>article</type><title>SMART-LLM: Smart Multi-Agent Robot Task Planning using Large Language Models</title><source>Free E- Journals</source><creator>Shyam Sundar Kannan ; Venkatesh, Vishnunandan L N ; Byung-Cheol Min</creator><creatorcontrib>Shyam Sundar Kannan ; Venkatesh, Vishnunandan L N ; Byung-Cheol Min</creatorcontrib><description>In this work, we introduce SMART-LLM, an innovative framework designed for embodied multi-robot task planning. SMART-LLM: Smart Multi-Agent Robot Task Planning using Large Language Models (LLMs), harnesses the power of LLMs to convert high-level task instructions provided as input into a multi-robot task plan. It accomplishes this by executing a series of stages, including task decomposition, coalition formation, and task allocation, all guided by programmatic LLM prompts within the few-shot prompting paradigm. We create a benchmark dataset designed for validating the multi-robot task planning problem, encompassing four distinct categories of high-level instructions that vary in task complexity. Our evaluation experiments span both simulation and real-world scenarios, demonstrating that the proposed model can achieve promising results for generating multi-robot task plans. The experimental videos, code, and datasets from the work can be found at https://sites.google.com/view/smart-llm/.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Large language models ; Multiagent systems ; Multiple robots ; Task complexity ; Task planning (robotics)</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Shyam Sundar Kannan</creatorcontrib><creatorcontrib>Venkatesh, Vishnunandan L N</creatorcontrib><creatorcontrib>Byung-Cheol Min</creatorcontrib><title>SMART-LLM: Smart Multi-Agent Robot Task Planning using Large Language Models</title><title>arXiv.org</title><description>In this work, we introduce SMART-LLM, an innovative framework designed for embodied multi-robot task planning. SMART-LLM: Smart Multi-Agent Robot Task Planning using Large Language Models (LLMs), harnesses the power of LLMs to convert high-level task instructions provided as input into a multi-robot task plan. It accomplishes this by executing a series of stages, including task decomposition, coalition formation, and task allocation, all guided by programmatic LLM prompts within the few-shot prompting paradigm. We create a benchmark dataset designed for validating the multi-robot task planning problem, encompassing four distinct categories of high-level instructions that vary in task complexity. Our evaluation experiments span both simulation and real-world scenarios, demonstrating that the proposed model can achieve promising results for generating multi-robot task plans. The experimental videos, code, and datasets from the work can be found at https://sites.google.com/view/smart-llm/.</description><subject>Datasets</subject><subject>Large language models</subject><subject>Multiagent systems</subject><subject>Multiple robots</subject><subject>Task complexity</subject><subject>Task planning (robotics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNik0KwjAYBYMgWLR3CLgO1C9tLO6KKC4SkNp9iRhDa0w0P_e3ggdwM2_gzQxlQOmG1CXAAuUhjEVRANtCVdEM8Yto2o5wLnb48pQ-YpFMHEijlY24dVcXcSfDA5-NtHawGqfwJZdeq4lWJzmJcDdlwgrN79IElf92idbHQ7c_kZd376RC7EeXvJ2uHmrGKqhLxuh_1QdC-DvF</recordid><startdate>20240323</startdate><enddate>20240323</enddate><creator>Shyam Sundar Kannan</creator><creator>Venkatesh, Vishnunandan L N</creator><creator>Byung-Cheol Min</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240323</creationdate><title>SMART-LLM: Smart Multi-Agent Robot Task Planning using Large Language Models</title><author>Shyam Sundar Kannan ; Venkatesh, Vishnunandan L N ; Byung-Cheol Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28665284663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Large language models</topic><topic>Multiagent systems</topic><topic>Multiple robots</topic><topic>Task complexity</topic><topic>Task planning (robotics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Shyam Sundar Kannan</creatorcontrib><creatorcontrib>Venkatesh, Vishnunandan L N</creatorcontrib><creatorcontrib>Byung-Cheol Min</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shyam Sundar Kannan</au><au>Venkatesh, Vishnunandan L N</au><au>Byung-Cheol Min</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>SMART-LLM: Smart Multi-Agent Robot Task Planning using Large Language Models</atitle><jtitle>arXiv.org</jtitle><date>2024-03-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this work, we introduce SMART-LLM, an innovative framework designed for embodied multi-robot task planning. SMART-LLM: Smart Multi-Agent Robot Task Planning using Large Language Models (LLMs), harnesses the power of LLMs to convert high-level task instructions provided as input into a multi-robot task plan. It accomplishes this by executing a series of stages, including task decomposition, coalition formation, and task allocation, all guided by programmatic LLM prompts within the few-shot prompting paradigm. We create a benchmark dataset designed for validating the multi-robot task planning problem, encompassing four distinct categories of high-level instructions that vary in task complexity. Our evaluation experiments span both simulation and real-world scenarios, demonstrating that the proposed model can achieve promising results for generating multi-robot task plans. The experimental videos, code, and datasets from the work can be found at https://sites.google.com/view/smart-llm/.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2866528466 |
source | Free E- Journals |
subjects | Datasets Large language models Multiagent systems Multiple robots Task complexity Task planning (robotics) |
title | SMART-LLM: Smart Multi-Agent Robot Task Planning using Large Language Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=SMART-LLM:%20Smart%20Multi-Agent%20Robot%20Task%20Planning%20using%20Large%20Language%20Models&rft.jtitle=arXiv.org&rft.au=Shyam%20Sundar%20Kannan&rft.date=2024-03-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2866528466%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866528466&rft_id=info:pmid/&rfr_iscdi=true |