Randic index in various graphs

The Randic index of the graph is defined by the sum of bond contributions R(G)=1didj where di and dj are the degrees of the adjacent nodes. Here I investigated the concept of randic index in various graphs. Further I will identify the Randic index R(G) in different graphs.

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Thamilisai, A., Shobana, A., Revathi, V. M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2831
creator Thamilisai, A.
Shobana, A.
Revathi, V. M.
description The Randic index of the graph is defined by the sum of bond contributions R(G)=1didj where di and dj are the degrees of the adjacent nodes. Here I investigated the concept of randic index in various graphs. Further I will identify the Randic index R(G) in different graphs.
doi_str_mv 10.1063/5.0172441
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2866494146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866494146</sourcerecordid><originalsourceid>FETCH-LOGICAL-p965-1ae30ac52a834b725f950bb5dd7f9554621ff08367d87d0c1c83fc473e1fb0133</originalsourceid><addsrcrecordid>eNotj01LxDAYhIMoWFcP_gEpeBO6vm--e5TFVWFBkD14C2nSaBZta9KK_nsru5eZOTzMMIRcIiwRJLsVS0BFOccjUqAQWCmJ8pgUADWvKGevp-Qs5x0ArZXSBbl6sZ2Proydb39mLb9tiv2Uy7dkh_d8Tk6C_cjtxcEXZLu-364eq83zw9PqblMNtRQV2paBdYJazXijqAi1gKYR3qs5CS4phgCaSeW18uDQaRYcV6zF0AAytiDX-9oh9V9Tm0ez66fUzYuGail5zZHLmbrZU9nF0Y6x78yQ4qdNvwbB_N83whzusz8JP0m4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2866494146</pqid></control><display><type>conference_proceeding</type><title>Randic index in various graphs</title><source>AIP Journals</source><creator>Thamilisai, A. ; Shobana, A. ; Revathi, V. M.</creator><contributor>Vijayalakshmi, K. ; Rajakarunakaran, S. ; Ganesan, L.</contributor><creatorcontrib>Thamilisai, A. ; Shobana, A. ; Revathi, V. M. ; Vijayalakshmi, K. ; Rajakarunakaran, S. ; Ganesan, L.</creatorcontrib><description>The Randic index of the graph is defined by the sum of bond contributions R(G)=1didj where di and dj are the degrees of the adjacent nodes. Here I investigated the concept of randic index in various graphs. Further I will identify the Randic index R(G) in different graphs.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0172441</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Graphs</subject><ispartof>AIP conference proceedings, 2023, Vol.2831 (1)</ispartof><rights>AIP Publishing LLC</rights><rights>2023 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0172441$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76353</link.rule.ids></links><search><contributor>Vijayalakshmi, K.</contributor><contributor>Rajakarunakaran, S.</contributor><contributor>Ganesan, L.</contributor><creatorcontrib>Thamilisai, A.</creatorcontrib><creatorcontrib>Shobana, A.</creatorcontrib><creatorcontrib>Revathi, V. M.</creatorcontrib><title>Randic index in various graphs</title><title>AIP conference proceedings</title><description>The Randic index of the graph is defined by the sum of bond contributions R(G)=1didj where di and dj are the degrees of the adjacent nodes. Here I investigated the concept of randic index in various graphs. Further I will identify the Randic index R(G) in different graphs.</description><subject>Graphs</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotj01LxDAYhIMoWFcP_gEpeBO6vm--e5TFVWFBkD14C2nSaBZta9KK_nsru5eZOTzMMIRcIiwRJLsVS0BFOccjUqAQWCmJ8pgUADWvKGevp-Qs5x0ArZXSBbl6sZ2Proydb39mLb9tiv2Uy7dkh_d8Tk6C_cjtxcEXZLu-364eq83zw9PqblMNtRQV2paBdYJazXijqAi1gKYR3qs5CS4phgCaSeW18uDQaRYcV6zF0AAytiDX-9oh9V9Tm0ez66fUzYuGail5zZHLmbrZU9nF0Y6x78yQ4qdNvwbB_N83whzusz8JP0m4</recordid><startdate>20230920</startdate><enddate>20230920</enddate><creator>Thamilisai, A.</creator><creator>Shobana, A.</creator><creator>Revathi, V. M.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230920</creationdate><title>Randic index in various graphs</title><author>Thamilisai, A. ; Shobana, A. ; Revathi, V. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p965-1ae30ac52a834b725f950bb5dd7f9554621ff08367d87d0c1c83fc473e1fb0133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thamilisai, A.</creatorcontrib><creatorcontrib>Shobana, A.</creatorcontrib><creatorcontrib>Revathi, V. M.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thamilisai, A.</au><au>Shobana, A.</au><au>Revathi, V. M.</au><au>Vijayalakshmi, K.</au><au>Rajakarunakaran, S.</au><au>Ganesan, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Randic index in various graphs</atitle><btitle>AIP conference proceedings</btitle><date>2023-09-20</date><risdate>2023</risdate><volume>2831</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The Randic index of the graph is defined by the sum of bond contributions R(G)=1didj where di and dj are the degrees of the adjacent nodes. Here I investigated the concept of randic index in various graphs. Further I will identify the Randic index R(G) in different graphs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0172441</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2831 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2866494146
source AIP Journals
subjects Graphs
title Randic index in various graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Randic%20index%20in%20various%20graphs&rft.btitle=AIP%20conference%20proceedings&rft.au=Thamilisai,%20A.&rft.date=2023-09-20&rft.volume=2831&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0172441&rft_dat=%3Cproquest_scita%3E2866494146%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866494146&rft_id=info:pmid/&rfr_iscdi=true