Space-Time Sampling for Network Observability

Designing sparse sampling strategies are crucial in having resilient estimation and control in networked systems as they make sampling less expensive and networks more resilient w.r.t where and when samples are collected. It is shown under what conditions taking coarse samples from a network will co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control of network systems 2023-09, Vol.10 (3), p.1-12
Hauptverfasser: Amini, Arash, Mousavi, Hossein K., Sun, Qiyu, Motee, Nader
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 3
container_start_page 1
container_title IEEE transactions on control of network systems
container_volume 10
creator Amini, Arash
Mousavi, Hossein K.
Sun, Qiyu
Motee, Nader
description Designing sparse sampling strategies are crucial in having resilient estimation and control in networked systems as they make sampling less expensive and networks more resilient w.r.t where and when samples are collected. It is shown under what conditions taking coarse samples from a network will contain the same amount of information as a finer set of samples. Our goal is to estimate the initial condition of linear time-invariant networks using a set of noisy measurements. The observability condition is reformulated as the frame condition, where one can easily trace location and time stamps of each sample. We compare estimation quality of various sampling strategies using estimation measures, which depend on spectrum of the corresponding frame operators. Using properties of the minimal polynomial of the state matrix, deterministic and randomized methods are suggested to construct observability frames. Intrinsic tradeoffs assert that collecting samples from fewer subsystems dictates taking more samples (in average) per subsystem. Three scalable algorithms are developed to generate sparse space-time sampling strategies with explicit error bounds.
doi_str_mv 10.1109/TCNS.2022.3223735
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2866482043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9956898</ieee_id><sourcerecordid>2866482043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-d0917a73484b07f0da38699d5f40ef4cf41f838db0d406fee8d264e6fdbb74e53</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsNT-APES8Jw4-5ndoxS_oLSH1vOyyc5KatvE3VTpvzelRTzNO_C8M_AQckuhoBTMw2o6XxYMGCs4Y7zk8oKMGGcyl7qEy3_5mkxSWgMAZXLY-Yjky87VmK-aLWZLt-02ze4jC23M5tj_tPEzW1QJ47ermk3TH27IVXCbhJPzHJP356fV9DWfLV7epo-zvGZC9rkHQ0tXcqFFBWUA77hWxngZBGAQdRA0aK59BV6ACojaMyVQBV9VpUDJx-T-dLeL7dceU2_X7T7uhpeWaaWEZiD4QNETVcc2pYjBdrHZuniwFOxRjD2KsUcx9ixm6NydOg0i_vHGSKWN5r_G5F2J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866482043</pqid></control><display><type>article</type><title>Space-Time Sampling for Network Observability</title><source>IEEE Electronic Library (IEL)</source><creator>Amini, Arash ; Mousavi, Hossein K. ; Sun, Qiyu ; Motee, Nader</creator><creatorcontrib>Amini, Arash ; Mousavi, Hossein K. ; Sun, Qiyu ; Motee, Nader</creatorcontrib><description>Designing sparse sampling strategies are crucial in having resilient estimation and control in networked systems as they make sampling less expensive and networks more resilient w.r.t where and when samples are collected. It is shown under what conditions taking coarse samples from a network will contain the same amount of information as a finer set of samples. Our goal is to estimate the initial condition of linear time-invariant networks using a set of noisy measurements. The observability condition is reformulated as the frame condition, where one can easily trace location and time stamps of each sample. We compare estimation quality of various sampling strategies using estimation measures, which depend on spectrum of the corresponding frame operators. Using properties of the minimal polynomial of the state matrix, deterministic and randomized methods are suggested to construct observability frames. Intrinsic tradeoffs assert that collecting samples from fewer subsystems dictates taking more samples (in average) per subsystem. Three scalable algorithms are developed to generate sparse space-time sampling strategies with explicit error bounds.</description><identifier>ISSN: 2325-5870</identifier><identifier>EISSN: 2325-5870</identifier><identifier>EISSN: 2372-2533</identifier><identifier>DOI: 10.1109/TCNS.2022.3223735</identifier><identifier>CODEN: ITCNAY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Controllability ; Estimation ; Network systems ; Observability ; Polynomials ; Random variables ; Sampling ; Sensors ; Sparse matrices ; Subsystems</subject><ispartof>IEEE transactions on control of network systems, 2023-09, Vol.10 (3), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-d0917a73484b07f0da38699d5f40ef4cf41f838db0d406fee8d264e6fdbb74e53</cites><orcidid>0000-0002-0597-3659 ; 0000-0002-3713-8674 ; 0000-0002-0341-313X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9956898$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9956898$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Amini, Arash</creatorcontrib><creatorcontrib>Mousavi, Hossein K.</creatorcontrib><creatorcontrib>Sun, Qiyu</creatorcontrib><creatorcontrib>Motee, Nader</creatorcontrib><title>Space-Time Sampling for Network Observability</title><title>IEEE transactions on control of network systems</title><addtitle>TCNS</addtitle><description>Designing sparse sampling strategies are crucial in having resilient estimation and control in networked systems as they make sampling less expensive and networks more resilient w.r.t where and when samples are collected. It is shown under what conditions taking coarse samples from a network will contain the same amount of information as a finer set of samples. Our goal is to estimate the initial condition of linear time-invariant networks using a set of noisy measurements. The observability condition is reformulated as the frame condition, where one can easily trace location and time stamps of each sample. We compare estimation quality of various sampling strategies using estimation measures, which depend on spectrum of the corresponding frame operators. Using properties of the minimal polynomial of the state matrix, deterministic and randomized methods are suggested to construct observability frames. Intrinsic tradeoffs assert that collecting samples from fewer subsystems dictates taking more samples (in average) per subsystem. Three scalable algorithms are developed to generate sparse space-time sampling strategies with explicit error bounds.</description><subject>Algorithms</subject><subject>Controllability</subject><subject>Estimation</subject><subject>Network systems</subject><subject>Observability</subject><subject>Polynomials</subject><subject>Random variables</subject><subject>Sampling</subject><subject>Sensors</subject><subject>Sparse matrices</subject><subject>Subsystems</subject><issn>2325-5870</issn><issn>2325-5870</issn><issn>2372-2533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsNT-APES8Jw4-5ndoxS_oLSH1vOyyc5KatvE3VTpvzelRTzNO_C8M_AQckuhoBTMw2o6XxYMGCs4Y7zk8oKMGGcyl7qEy3_5mkxSWgMAZXLY-Yjky87VmK-aLWZLt-02ze4jC23M5tj_tPEzW1QJ47ermk3TH27IVXCbhJPzHJP356fV9DWfLV7epo-zvGZC9rkHQ0tXcqFFBWUA77hWxngZBGAQdRA0aK59BV6ACojaMyVQBV9VpUDJx-T-dLeL7dceU2_X7T7uhpeWaaWEZiD4QNETVcc2pYjBdrHZuniwFOxRjD2KsUcx9ixm6NydOg0i_vHGSKWN5r_G5F2J</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Amini, Arash</creator><creator>Mousavi, Hossein K.</creator><creator>Sun, Qiyu</creator><creator>Motee, Nader</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0597-3659</orcidid><orcidid>https://orcid.org/0000-0002-3713-8674</orcidid><orcidid>https://orcid.org/0000-0002-0341-313X</orcidid></search><sort><creationdate>20230901</creationdate><title>Space-Time Sampling for Network Observability</title><author>Amini, Arash ; Mousavi, Hossein K. ; Sun, Qiyu ; Motee, Nader</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-d0917a73484b07f0da38699d5f40ef4cf41f838db0d406fee8d264e6fdbb74e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Controllability</topic><topic>Estimation</topic><topic>Network systems</topic><topic>Observability</topic><topic>Polynomials</topic><topic>Random variables</topic><topic>Sampling</topic><topic>Sensors</topic><topic>Sparse matrices</topic><topic>Subsystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amini, Arash</creatorcontrib><creatorcontrib>Mousavi, Hossein K.</creatorcontrib><creatorcontrib>Sun, Qiyu</creatorcontrib><creatorcontrib>Motee, Nader</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on control of network systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amini, Arash</au><au>Mousavi, Hossein K.</au><au>Sun, Qiyu</au><au>Motee, Nader</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Space-Time Sampling for Network Observability</atitle><jtitle>IEEE transactions on control of network systems</jtitle><stitle>TCNS</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>10</volume><issue>3</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2325-5870</issn><eissn>2325-5870</eissn><eissn>2372-2533</eissn><coden>ITCNAY</coden><abstract>Designing sparse sampling strategies are crucial in having resilient estimation and control in networked systems as they make sampling less expensive and networks more resilient w.r.t where and when samples are collected. It is shown under what conditions taking coarse samples from a network will contain the same amount of information as a finer set of samples. Our goal is to estimate the initial condition of linear time-invariant networks using a set of noisy measurements. The observability condition is reformulated as the frame condition, where one can easily trace location and time stamps of each sample. We compare estimation quality of various sampling strategies using estimation measures, which depend on spectrum of the corresponding frame operators. Using properties of the minimal polynomial of the state matrix, deterministic and randomized methods are suggested to construct observability frames. Intrinsic tradeoffs assert that collecting samples from fewer subsystems dictates taking more samples (in average) per subsystem. Three scalable algorithms are developed to generate sparse space-time sampling strategies with explicit error bounds.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCNS.2022.3223735</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0597-3659</orcidid><orcidid>https://orcid.org/0000-0002-3713-8674</orcidid><orcidid>https://orcid.org/0000-0002-0341-313X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2325-5870
ispartof IEEE transactions on control of network systems, 2023-09, Vol.10 (3), p.1-12
issn 2325-5870
2325-5870
2372-2533
language eng
recordid cdi_proquest_journals_2866482043
source IEEE Electronic Library (IEL)
subjects Algorithms
Controllability
Estimation
Network systems
Observability
Polynomials
Random variables
Sampling
Sensors
Sparse matrices
Subsystems
title Space-Time Sampling for Network Observability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Space-Time%20Sampling%20for%20Network%20Observability&rft.jtitle=IEEE%20transactions%20on%20control%20of%20network%20systems&rft.au=Amini,%20Arash&rft.date=2023-09-01&rft.volume=10&rft.issue=3&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2325-5870&rft.eissn=2325-5870&rft.coden=ITCNAY&rft_id=info:doi/10.1109/TCNS.2022.3223735&rft_dat=%3Cproquest_RIE%3E2866482043%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866482043&rft_id=info:pmid/&rft_ieee_id=9956898&rfr_iscdi=true