Network traffic characteristics of hyperscale data centers in the era of cloud applications
We present the network architecture of Alibaba Cloud DCs and investigate their traffic characteristics based on statistical data and captured traces. The statistical coarse-grained data are in the granularity of one minute, while the captured traces are fine-grained data that are in the granularity...
Gespeichert in:
Veröffentlicht in: | Journal of optical communications and networking 2023-10, Vol.15 (10), p.736-749 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 749 |
---|---|
container_issue | 10 |
container_start_page | 736 |
container_title | Journal of optical communications and networking |
container_volume | 15 |
creator | Yan, Fulong Xie, Chongjin Zhang, Jie Xi, Yongqing Yao, Zhiping Liu, Yang Lin, Xingming Huang, Jianbo Ce, Yu Zhang, Xuegong Calabretta, Nicola |
description | We present the network architecture of Alibaba Cloud DCs and investigate their traffic characteristics based on statistical data and captured traces. The statistical coarse-grained data are in the granularity of one minute, while the captured traces are fine-grained data that are in the granularity of one packet. We study the traffic features from the perspective of a macroscopic view, network performance, and microscopic view. The results report that the average utilization ratio of spine switches is stable when the observation time period reaches one day and the intra-ToR traffic ratio is in the range of 2%–10%. By mapping the folded-Clos topology to a tree topology and considering logical switching planes, we obtain the traffic matrix among pods from the average port utilization ratio. As we further investigate the perspective of network performance and the microscopic view, we find that there is no cell loss happening as the normalized queue speed {Q_s} is lower than 0.4. The normalized queue speed {Q_s} is defined as the total bytes of a queue sent in 1 s divided by 100 Gb, which reflects the packet sending speed of the queue. The observed maximum buffer size for one port conforms with the calculated maximum buffer occupation of 2.8 MB. By analyzing the captured traces, we find that the packet length is subject to a trimodal distribution. Under a time granularity of 10 ms, the instant bandwidth of one ToR port could reach 96 Gb/s at an average load of around 0.2 under a maximum link bandwidth of 100 Gb/s. |
doi_str_mv | 10.1364/JOCN.494291 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2866481275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10258089</ieee_id><sourcerecordid>2866481275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-4c96c38e81d639086d11356a697619f9caabd9d71730d9a515feb7819920b4cc3</originalsourceid><addsrcrecordid>eNpN0E1LAzEQBuAgCtbqyauHgEfZmkl2s8lRip-U9qInD0s6m9DUdXdNUqT_3i0r4mkG5mFmeAm5BDYDIfPbl9V8Oct1zjUckQnoXGRMCn3813N2Ss5i3DImS4BiQt6XNn134YOmYJzzSHFjgsFkg4_JY6Sdo5t9b0NE01ham2Qo2naYR-pbmjaW2mAOCptuV1PT941Hk3zXxnNy4kwT7cVvnZK3h_vX-VO2WD0-z-8WGXLFU5ajliiUVVAPvzIlawBRSCN1KUE7jcasa12XUApWa1NA4ey6VKA1Z-scUUzJ9bi3D93XzsZUbbtdaIeTFVdS5gp4WQzqZlQYuhiDdVUf_KcJ-wpYdUivOqRXjekN-mrU3lr7T_JCMaXFD_m7ayM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866481275</pqid></control><display><type>article</type><title>Network traffic characteristics of hyperscale data centers in the era of cloud applications</title><source>IEEE Electronic Library (IEL)</source><creator>Yan, Fulong ; Xie, Chongjin ; Zhang, Jie ; Xi, Yongqing ; Yao, Zhiping ; Liu, Yang ; Lin, Xingming ; Huang, Jianbo ; Ce, Yu ; Zhang, Xuegong ; Calabretta, Nicola</creator><creatorcontrib>Yan, Fulong ; Xie, Chongjin ; Zhang, Jie ; Xi, Yongqing ; Yao, Zhiping ; Liu, Yang ; Lin, Xingming ; Huang, Jianbo ; Ce, Yu ; Zhang, Xuegong ; Calabretta, Nicola</creatorcontrib><description>We present the network architecture of Alibaba Cloud DCs and investigate their traffic characteristics based on statistical data and captured traces. The statistical coarse-grained data are in the granularity of one minute, while the captured traces are fine-grained data that are in the granularity of one packet. We study the traffic features from the perspective of a macroscopic view, network performance, and microscopic view. The results report that the average utilization ratio of spine switches is stable when the observation time period reaches one day and the intra-ToR traffic ratio is in the range of 2%–10%. By mapping the folded-Clos topology to a tree topology and considering logical switching planes, we obtain the traffic matrix among pods from the average port utilization ratio. As we further investigate the perspective of network performance and the microscopic view, we find that there is no cell loss happening as the normalized queue speed {Q_s} is lower than 0.4. The normalized queue speed {Q_s} is defined as the total bytes of a queue sent in 1 s divided by 100 Gb, which reflects the packet sending speed of the queue. The observed maximum buffer size for one port conforms with the calculated maximum buffer occupation of 2.8 MB. By analyzing the captured traces, we find that the packet length is subject to a trimodal distribution. Under a time granularity of 10 ms, the instant bandwidth of one ToR port could reach 96 Gb/s at an average load of around 0.2 under a maximum link bandwidth of 100 Gb/s.</description><identifier>ISSN: 1943-0620</identifier><identifier>EISSN: 1943-0639</identifier><identifier>DOI: 10.1364/JOCN.494291</identifier><identifier>CODEN: JOCNBB</identifier><language>eng</language><publisher>Piscataway: Optica Publishing Group</publisher><subject>Bandwidth ; Buffers ; Cloud computing ; Communications traffic ; Computer architecture ; Data centers ; Network topologies ; Optical fiber networks ; Optical switches ; Queues ; Servers ; Topology</subject><ispartof>Journal of optical communications and networking, 2023-10, Vol.15 (10), p.736-749</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-4c96c38e81d639086d11356a697619f9caabd9d71730d9a515feb7819920b4cc3</citedby><cites>FETCH-LOGICAL-c282t-4c96c38e81d639086d11356a697619f9caabd9d71730d9a515feb7819920b4cc3</cites><orcidid>0000-0001-9106-2538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10258089$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10258089$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yan, Fulong</creatorcontrib><creatorcontrib>Xie, Chongjin</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Xi, Yongqing</creatorcontrib><creatorcontrib>Yao, Zhiping</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Lin, Xingming</creatorcontrib><creatorcontrib>Huang, Jianbo</creatorcontrib><creatorcontrib>Ce, Yu</creatorcontrib><creatorcontrib>Zhang, Xuegong</creatorcontrib><creatorcontrib>Calabretta, Nicola</creatorcontrib><title>Network traffic characteristics of hyperscale data centers in the era of cloud applications</title><title>Journal of optical communications and networking</title><addtitle>jocn</addtitle><description>We present the network architecture of Alibaba Cloud DCs and investigate their traffic characteristics based on statistical data and captured traces. The statistical coarse-grained data are in the granularity of one minute, while the captured traces are fine-grained data that are in the granularity of one packet. We study the traffic features from the perspective of a macroscopic view, network performance, and microscopic view. The results report that the average utilization ratio of spine switches is stable when the observation time period reaches one day and the intra-ToR traffic ratio is in the range of 2%–10%. By mapping the folded-Clos topology to a tree topology and considering logical switching planes, we obtain the traffic matrix among pods from the average port utilization ratio. As we further investigate the perspective of network performance and the microscopic view, we find that there is no cell loss happening as the normalized queue speed {Q_s} is lower than 0.4. The normalized queue speed {Q_s} is defined as the total bytes of a queue sent in 1 s divided by 100 Gb, which reflects the packet sending speed of the queue. The observed maximum buffer size for one port conforms with the calculated maximum buffer occupation of 2.8 MB. By analyzing the captured traces, we find that the packet length is subject to a trimodal distribution. Under a time granularity of 10 ms, the instant bandwidth of one ToR port could reach 96 Gb/s at an average load of around 0.2 under a maximum link bandwidth of 100 Gb/s.</description><subject>Bandwidth</subject><subject>Buffers</subject><subject>Cloud computing</subject><subject>Communications traffic</subject><subject>Computer architecture</subject><subject>Data centers</subject><subject>Network topologies</subject><subject>Optical fiber networks</subject><subject>Optical switches</subject><subject>Queues</subject><subject>Servers</subject><subject>Topology</subject><issn>1943-0620</issn><issn>1943-0639</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpN0E1LAzEQBuAgCtbqyauHgEfZmkl2s8lRip-U9qInD0s6m9DUdXdNUqT_3i0r4mkG5mFmeAm5BDYDIfPbl9V8Oct1zjUckQnoXGRMCn3813N2Ss5i3DImS4BiQt6XNn134YOmYJzzSHFjgsFkg4_JY6Sdo5t9b0NE01ham2Qo2naYR-pbmjaW2mAOCptuV1PT941Hk3zXxnNy4kwT7cVvnZK3h_vX-VO2WD0-z-8WGXLFU5ajliiUVVAPvzIlawBRSCN1KUE7jcasa12XUApWa1NA4ey6VKA1Z-scUUzJ9bi3D93XzsZUbbtdaIeTFVdS5gp4WQzqZlQYuhiDdVUf_KcJ-wpYdUivOqRXjekN-mrU3lr7T_JCMaXFD_m7ayM</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Yan, Fulong</creator><creator>Xie, Chongjin</creator><creator>Zhang, Jie</creator><creator>Xi, Yongqing</creator><creator>Yao, Zhiping</creator><creator>Liu, Yang</creator><creator>Lin, Xingming</creator><creator>Huang, Jianbo</creator><creator>Ce, Yu</creator><creator>Zhang, Xuegong</creator><creator>Calabretta, Nicola</creator><general>Optica Publishing Group</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9106-2538</orcidid></search><sort><creationdate>20231001</creationdate><title>Network traffic characteristics of hyperscale data centers in the era of cloud applications</title><author>Yan, Fulong ; Xie, Chongjin ; Zhang, Jie ; Xi, Yongqing ; Yao, Zhiping ; Liu, Yang ; Lin, Xingming ; Huang, Jianbo ; Ce, Yu ; Zhang, Xuegong ; Calabretta, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-4c96c38e81d639086d11356a697619f9caabd9d71730d9a515feb7819920b4cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bandwidth</topic><topic>Buffers</topic><topic>Cloud computing</topic><topic>Communications traffic</topic><topic>Computer architecture</topic><topic>Data centers</topic><topic>Network topologies</topic><topic>Optical fiber networks</topic><topic>Optical switches</topic><topic>Queues</topic><topic>Servers</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Fulong</creatorcontrib><creatorcontrib>Xie, Chongjin</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Xi, Yongqing</creatorcontrib><creatorcontrib>Yao, Zhiping</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Lin, Xingming</creatorcontrib><creatorcontrib>Huang, Jianbo</creatorcontrib><creatorcontrib>Ce, Yu</creatorcontrib><creatorcontrib>Zhang, Xuegong</creatorcontrib><creatorcontrib>Calabretta, Nicola</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of optical communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan, Fulong</au><au>Xie, Chongjin</au><au>Zhang, Jie</au><au>Xi, Yongqing</au><au>Yao, Zhiping</au><au>Liu, Yang</au><au>Lin, Xingming</au><au>Huang, Jianbo</au><au>Ce, Yu</au><au>Zhang, Xuegong</au><au>Calabretta, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network traffic characteristics of hyperscale data centers in the era of cloud applications</atitle><jtitle>Journal of optical communications and networking</jtitle><stitle>jocn</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>15</volume><issue>10</issue><spage>736</spage><epage>749</epage><pages>736-749</pages><issn>1943-0620</issn><eissn>1943-0639</eissn><coden>JOCNBB</coden><abstract>We present the network architecture of Alibaba Cloud DCs and investigate their traffic characteristics based on statistical data and captured traces. The statistical coarse-grained data are in the granularity of one minute, while the captured traces are fine-grained data that are in the granularity of one packet. We study the traffic features from the perspective of a macroscopic view, network performance, and microscopic view. The results report that the average utilization ratio of spine switches is stable when the observation time period reaches one day and the intra-ToR traffic ratio is in the range of 2%–10%. By mapping the folded-Clos topology to a tree topology and considering logical switching planes, we obtain the traffic matrix among pods from the average port utilization ratio. As we further investigate the perspective of network performance and the microscopic view, we find that there is no cell loss happening as the normalized queue speed {Q_s} is lower than 0.4. The normalized queue speed {Q_s} is defined as the total bytes of a queue sent in 1 s divided by 100 Gb, which reflects the packet sending speed of the queue. The observed maximum buffer size for one port conforms with the calculated maximum buffer occupation of 2.8 MB. By analyzing the captured traces, we find that the packet length is subject to a trimodal distribution. Under a time granularity of 10 ms, the instant bandwidth of one ToR port could reach 96 Gb/s at an average load of around 0.2 under a maximum link bandwidth of 100 Gb/s.</abstract><cop>Piscataway</cop><pub>Optica Publishing Group</pub><doi>10.1364/JOCN.494291</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9106-2538</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1943-0620 |
ispartof | Journal of optical communications and networking, 2023-10, Vol.15 (10), p.736-749 |
issn | 1943-0620 1943-0639 |
language | eng |
recordid | cdi_proquest_journals_2866481275 |
source | IEEE Electronic Library (IEL) |
subjects | Bandwidth Buffers Cloud computing Communications traffic Computer architecture Data centers Network topologies Optical fiber networks Optical switches Queues Servers Topology |
title | Network traffic characteristics of hyperscale data centers in the era of cloud applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20traffic%20characteristics%20of%20hyperscale%20data%20centers%20in%20the%20era%20of%20cloud%20applications&rft.jtitle=Journal%20of%20optical%20communications%20and%20networking&rft.au=Yan,%20Fulong&rft.date=2023-10-01&rft.volume=15&rft.issue=10&rft.spage=736&rft.epage=749&rft.pages=736-749&rft.issn=1943-0620&rft.eissn=1943-0639&rft.coden=JOCNBB&rft_id=info:doi/10.1364/JOCN.494291&rft_dat=%3Cproquest_RIE%3E2866481275%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866481275&rft_id=info:pmid/&rft_ieee_id=10258089&rfr_iscdi=true |