Network traffic characteristics of hyperscale data centers in the era of cloud applications

We present the network architecture of Alibaba Cloud DCs and investigate their traffic characteristics based on statistical data and captured traces. The statistical coarse-grained data are in the granularity of one minute, while the captured traces are fine-grained data that are in the granularity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optical communications and networking 2023-10, Vol.15 (10), p.736-749
Hauptverfasser: Yan, Fulong, Xie, Chongjin, Zhang, Jie, Xi, Yongqing, Yao, Zhiping, Liu, Yang, Lin, Xingming, Huang, Jianbo, Ce, Yu, Zhang, Xuegong, Calabretta, Nicola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 749
container_issue 10
container_start_page 736
container_title Journal of optical communications and networking
container_volume 15
creator Yan, Fulong
Xie, Chongjin
Zhang, Jie
Xi, Yongqing
Yao, Zhiping
Liu, Yang
Lin, Xingming
Huang, Jianbo
Ce, Yu
Zhang, Xuegong
Calabretta, Nicola
description We present the network architecture of Alibaba Cloud DCs and investigate their traffic characteristics based on statistical data and captured traces. The statistical coarse-grained data are in the granularity of one minute, while the captured traces are fine-grained data that are in the granularity of one packet. We study the traffic features from the perspective of a macroscopic view, network performance, and microscopic view. The results report that the average utilization ratio of spine switches is stable when the observation time period reaches one day and the intra-ToR traffic ratio is in the range of 2%–10%. By mapping the folded-Clos topology to a tree topology and considering logical switching planes, we obtain the traffic matrix among pods from the average port utilization ratio. As we further investigate the perspective of network performance and the microscopic view, we find that there is no cell loss happening as the normalized queue speed {Q_s} is lower than 0.4. The normalized queue speed {Q_s} is defined as the total bytes of a queue sent in 1 s divided by 100 Gb, which reflects the packet sending speed of the queue. The observed maximum buffer size for one port conforms with the calculated maximum buffer occupation of 2.8 MB. By analyzing the captured traces, we find that the packet length is subject to a trimodal distribution. Under a time granularity of 10 ms, the instant bandwidth of one ToR port could reach 96 Gb/s at an average load of around 0.2 under a maximum link bandwidth of 100 Gb/s.
doi_str_mv 10.1364/JOCN.494291
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2866481275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10258089</ieee_id><sourcerecordid>2866481275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-4c96c38e81d639086d11356a697619f9caabd9d71730d9a515feb7819920b4cc3</originalsourceid><addsrcrecordid>eNpN0E1LAzEQBuAgCtbqyauHgEfZmkl2s8lRip-U9qInD0s6m9DUdXdNUqT_3i0r4mkG5mFmeAm5BDYDIfPbl9V8Oct1zjUckQnoXGRMCn3813N2Ss5i3DImS4BiQt6XNn134YOmYJzzSHFjgsFkg4_JY6Sdo5t9b0NE01ham2Qo2naYR-pbmjaW2mAOCptuV1PT941Hk3zXxnNy4kwT7cVvnZK3h_vX-VO2WD0-z-8WGXLFU5ajliiUVVAPvzIlawBRSCN1KUE7jcasa12XUApWa1NA4ey6VKA1Z-scUUzJ9bi3D93XzsZUbbtdaIeTFVdS5gp4WQzqZlQYuhiDdVUf_KcJ-wpYdUivOqRXjekN-mrU3lr7T_JCMaXFD_m7ayM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866481275</pqid></control><display><type>article</type><title>Network traffic characteristics of hyperscale data centers in the era of cloud applications</title><source>IEEE Electronic Library (IEL)</source><creator>Yan, Fulong ; Xie, Chongjin ; Zhang, Jie ; Xi, Yongqing ; Yao, Zhiping ; Liu, Yang ; Lin, Xingming ; Huang, Jianbo ; Ce, Yu ; Zhang, Xuegong ; Calabretta, Nicola</creator><creatorcontrib>Yan, Fulong ; Xie, Chongjin ; Zhang, Jie ; Xi, Yongqing ; Yao, Zhiping ; Liu, Yang ; Lin, Xingming ; Huang, Jianbo ; Ce, Yu ; Zhang, Xuegong ; Calabretta, Nicola</creatorcontrib><description>We present the network architecture of Alibaba Cloud DCs and investigate their traffic characteristics based on statistical data and captured traces. The statistical coarse-grained data are in the granularity of one minute, while the captured traces are fine-grained data that are in the granularity of one packet. We study the traffic features from the perspective of a macroscopic view, network performance, and microscopic view. The results report that the average utilization ratio of spine switches is stable when the observation time period reaches one day and the intra-ToR traffic ratio is in the range of 2%–10%. By mapping the folded-Clos topology to a tree topology and considering logical switching planes, we obtain the traffic matrix among pods from the average port utilization ratio. As we further investigate the perspective of network performance and the microscopic view, we find that there is no cell loss happening as the normalized queue speed {Q_s} is lower than 0.4. The normalized queue speed {Q_s} is defined as the total bytes of a queue sent in 1 s divided by 100 Gb, which reflects the packet sending speed of the queue. The observed maximum buffer size for one port conforms with the calculated maximum buffer occupation of 2.8 MB. By analyzing the captured traces, we find that the packet length is subject to a trimodal distribution. Under a time granularity of 10 ms, the instant bandwidth of one ToR port could reach 96 Gb/s at an average load of around 0.2 under a maximum link bandwidth of 100 Gb/s.</description><identifier>ISSN: 1943-0620</identifier><identifier>EISSN: 1943-0639</identifier><identifier>DOI: 10.1364/JOCN.494291</identifier><identifier>CODEN: JOCNBB</identifier><language>eng</language><publisher>Piscataway: Optica Publishing Group</publisher><subject>Bandwidth ; Buffers ; Cloud computing ; Communications traffic ; Computer architecture ; Data centers ; Network topologies ; Optical fiber networks ; Optical switches ; Queues ; Servers ; Topology</subject><ispartof>Journal of optical communications and networking, 2023-10, Vol.15 (10), p.736-749</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-4c96c38e81d639086d11356a697619f9caabd9d71730d9a515feb7819920b4cc3</citedby><cites>FETCH-LOGICAL-c282t-4c96c38e81d639086d11356a697619f9caabd9d71730d9a515feb7819920b4cc3</cites><orcidid>0000-0001-9106-2538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10258089$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10258089$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yan, Fulong</creatorcontrib><creatorcontrib>Xie, Chongjin</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Xi, Yongqing</creatorcontrib><creatorcontrib>Yao, Zhiping</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Lin, Xingming</creatorcontrib><creatorcontrib>Huang, Jianbo</creatorcontrib><creatorcontrib>Ce, Yu</creatorcontrib><creatorcontrib>Zhang, Xuegong</creatorcontrib><creatorcontrib>Calabretta, Nicola</creatorcontrib><title>Network traffic characteristics of hyperscale data centers in the era of cloud applications</title><title>Journal of optical communications and networking</title><addtitle>jocn</addtitle><description>We present the network architecture of Alibaba Cloud DCs and investigate their traffic characteristics based on statistical data and captured traces. The statistical coarse-grained data are in the granularity of one minute, while the captured traces are fine-grained data that are in the granularity of one packet. We study the traffic features from the perspective of a macroscopic view, network performance, and microscopic view. The results report that the average utilization ratio of spine switches is stable when the observation time period reaches one day and the intra-ToR traffic ratio is in the range of 2%–10%. By mapping the folded-Clos topology to a tree topology and considering logical switching planes, we obtain the traffic matrix among pods from the average port utilization ratio. As we further investigate the perspective of network performance and the microscopic view, we find that there is no cell loss happening as the normalized queue speed {Q_s} is lower than 0.4. The normalized queue speed {Q_s} is defined as the total bytes of a queue sent in 1 s divided by 100 Gb, which reflects the packet sending speed of the queue. The observed maximum buffer size for one port conforms with the calculated maximum buffer occupation of 2.8 MB. By analyzing the captured traces, we find that the packet length is subject to a trimodal distribution. Under a time granularity of 10 ms, the instant bandwidth of one ToR port could reach 96 Gb/s at an average load of around 0.2 under a maximum link bandwidth of 100 Gb/s.</description><subject>Bandwidth</subject><subject>Buffers</subject><subject>Cloud computing</subject><subject>Communications traffic</subject><subject>Computer architecture</subject><subject>Data centers</subject><subject>Network topologies</subject><subject>Optical fiber networks</subject><subject>Optical switches</subject><subject>Queues</subject><subject>Servers</subject><subject>Topology</subject><issn>1943-0620</issn><issn>1943-0639</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpN0E1LAzEQBuAgCtbqyauHgEfZmkl2s8lRip-U9qInD0s6m9DUdXdNUqT_3i0r4mkG5mFmeAm5BDYDIfPbl9V8Oct1zjUckQnoXGRMCn3813N2Ss5i3DImS4BiQt6XNn134YOmYJzzSHFjgsFkg4_JY6Sdo5t9b0NE01ham2Qo2naYR-pbmjaW2mAOCptuV1PT941Hk3zXxnNy4kwT7cVvnZK3h_vX-VO2WD0-z-8WGXLFU5ajliiUVVAPvzIlawBRSCN1KUE7jcasa12XUApWa1NA4ey6VKA1Z-scUUzJ9bi3D93XzsZUbbtdaIeTFVdS5gp4WQzqZlQYuhiDdVUf_KcJ-wpYdUivOqRXjekN-mrU3lr7T_JCMaXFD_m7ayM</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Yan, Fulong</creator><creator>Xie, Chongjin</creator><creator>Zhang, Jie</creator><creator>Xi, Yongqing</creator><creator>Yao, Zhiping</creator><creator>Liu, Yang</creator><creator>Lin, Xingming</creator><creator>Huang, Jianbo</creator><creator>Ce, Yu</creator><creator>Zhang, Xuegong</creator><creator>Calabretta, Nicola</creator><general>Optica Publishing Group</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9106-2538</orcidid></search><sort><creationdate>20231001</creationdate><title>Network traffic characteristics of hyperscale data centers in the era of cloud applications</title><author>Yan, Fulong ; Xie, Chongjin ; Zhang, Jie ; Xi, Yongqing ; Yao, Zhiping ; Liu, Yang ; Lin, Xingming ; Huang, Jianbo ; Ce, Yu ; Zhang, Xuegong ; Calabretta, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-4c96c38e81d639086d11356a697619f9caabd9d71730d9a515feb7819920b4cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bandwidth</topic><topic>Buffers</topic><topic>Cloud computing</topic><topic>Communications traffic</topic><topic>Computer architecture</topic><topic>Data centers</topic><topic>Network topologies</topic><topic>Optical fiber networks</topic><topic>Optical switches</topic><topic>Queues</topic><topic>Servers</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Fulong</creatorcontrib><creatorcontrib>Xie, Chongjin</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Xi, Yongqing</creatorcontrib><creatorcontrib>Yao, Zhiping</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Lin, Xingming</creatorcontrib><creatorcontrib>Huang, Jianbo</creatorcontrib><creatorcontrib>Ce, Yu</creatorcontrib><creatorcontrib>Zhang, Xuegong</creatorcontrib><creatorcontrib>Calabretta, Nicola</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of optical communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan, Fulong</au><au>Xie, Chongjin</au><au>Zhang, Jie</au><au>Xi, Yongqing</au><au>Yao, Zhiping</au><au>Liu, Yang</au><au>Lin, Xingming</au><au>Huang, Jianbo</au><au>Ce, Yu</au><au>Zhang, Xuegong</au><au>Calabretta, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network traffic characteristics of hyperscale data centers in the era of cloud applications</atitle><jtitle>Journal of optical communications and networking</jtitle><stitle>jocn</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>15</volume><issue>10</issue><spage>736</spage><epage>749</epage><pages>736-749</pages><issn>1943-0620</issn><eissn>1943-0639</eissn><coden>JOCNBB</coden><abstract>We present the network architecture of Alibaba Cloud DCs and investigate their traffic characteristics based on statistical data and captured traces. The statistical coarse-grained data are in the granularity of one minute, while the captured traces are fine-grained data that are in the granularity of one packet. We study the traffic features from the perspective of a macroscopic view, network performance, and microscopic view. The results report that the average utilization ratio of spine switches is stable when the observation time period reaches one day and the intra-ToR traffic ratio is in the range of 2%–10%. By mapping the folded-Clos topology to a tree topology and considering logical switching planes, we obtain the traffic matrix among pods from the average port utilization ratio. As we further investigate the perspective of network performance and the microscopic view, we find that there is no cell loss happening as the normalized queue speed {Q_s} is lower than 0.4. The normalized queue speed {Q_s} is defined as the total bytes of a queue sent in 1 s divided by 100 Gb, which reflects the packet sending speed of the queue. The observed maximum buffer size for one port conforms with the calculated maximum buffer occupation of 2.8 MB. By analyzing the captured traces, we find that the packet length is subject to a trimodal distribution. Under a time granularity of 10 ms, the instant bandwidth of one ToR port could reach 96 Gb/s at an average load of around 0.2 under a maximum link bandwidth of 100 Gb/s.</abstract><cop>Piscataway</cop><pub>Optica Publishing Group</pub><doi>10.1364/JOCN.494291</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9106-2538</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1943-0620
ispartof Journal of optical communications and networking, 2023-10, Vol.15 (10), p.736-749
issn 1943-0620
1943-0639
language eng
recordid cdi_proquest_journals_2866481275
source IEEE Electronic Library (IEL)
subjects Bandwidth
Buffers
Cloud computing
Communications traffic
Computer architecture
Data centers
Network topologies
Optical fiber networks
Optical switches
Queues
Servers
Topology
title Network traffic characteristics of hyperscale data centers in the era of cloud applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20traffic%20characteristics%20of%20hyperscale%20data%20centers%20in%20the%20era%20of%20cloud%20applications&rft.jtitle=Journal%20of%20optical%20communications%20and%20networking&rft.au=Yan,%20Fulong&rft.date=2023-10-01&rft.volume=15&rft.issue=10&rft.spage=736&rft.epage=749&rft.pages=736-749&rft.issn=1943-0620&rft.eissn=1943-0639&rft.coden=JOCNBB&rft_id=info:doi/10.1364/JOCN.494291&rft_dat=%3Cproquest_RIE%3E2866481275%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866481275&rft_id=info:pmid/&rft_ieee_id=10258089&rfr_iscdi=true